Spatial Transcriptomics Technologies

Lars Borm Lab of Computational Biology lead by Stein Aerts

Single Cell RNA sequencing

Cellular complexity

Tissue architecture

Complex tissue

Spatial measurement

Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8
Gene 9
Gene 10

Spatial cellular atlas

Understanding spatial technologies

Opening the black box

Goal

Understanding spatial technologies

- Choose the right technology
- Know the limitations / biases
- Recognize technical artifacts

4 Main approaches

(Many other methods not discussed)

Microscopy

Sequencing

Sequencing

Microscopy

Barcoded FISH in situ Sequencing

Microscopy

Barcoded FISH in situ Sequencing

Sequencing

Spatial barcodes

Microscopy

Barcoded FISH in situ Sequencing

Sequencing

Spatial Sequencing

Spatial tagging

NSZO 6

RNA moves

Barcodes move

Targeted

Targeted & **Un-targeted**

Targeted & **Un-targeted**

What do you use?

- MERFISH
- Vizgen MERFISH
- seqFISH
- Spatial Genomics GenePS
- EEL-FISH
- HyblSS
- 10X Xenium
- Nanostring/Bruker CosMx
- Resolve Mol. Cartography

in situ Sequencing

ISS

•

- STARmap
 - StellarOmics
 - Singular genomics G4X

Spatial Sequencing

Spatial tagging

- Spatial Transcriptomics
- 10X Visium (HD)
- Slide-seq
- Curio Seeker
- Stereo-seq
- BGI STOmics Stereo-seq
- Seq-Scope, Open-ST, Nova-ST

- DBiT-seq
- AtlasXomics
- Slide-tags
- Curio <u>– Trekker</u>

Microscopy

Barcoded FISH in situ Sequencing

in sit

ACTCAGCGGT

Sequencing

Spatial Sequencing

Spatial tagging

Fluorescent in situ Hybridization (FISH)

single molecule FISH (smFISH)

Femino *et al*. Science 1998 Raj *et al*. Nature Methods 2008

single molecule FISH (smFISH)

Gene 1 Gene 2 Gene 3 DNA

Breaking the color barrier

~20.000 genes

4-7 colors

Solution:

- Repeated staining on same sample
- Barcoding

Limited fluorophores

Reprobing same molecule

Lubeck et al. Nature Methods 2014

Scaling:

$$targets = f^n$$

 $4^8 = 65,536$

Problems:

- Optical density
- Errors

Solution:

• Sparce barcodes

Solution:

- Sparce barcodes 100110001
- Error robustness

MERFISH Chen et al. 2015 Science

Borm et al. Nat Biotech. 2023

Cell assignment

Cell segmentation

Nuclei

Panagiotakis *et al*. IEEE 2018

Membrane

Stapel et al. Development 2016

Cell body

Codeluppi et al. 2018 Nature Methods

Cell segmentation

Genes

Hybridization1_Tbr1

Hybridization1_Aldoc	38	0	9	5	38	2	4	3	7	10	 11	10	5	4	10	2	0	2	2	9
Hybridization1_Foxj1	0	0	0	1	5	0	3	1	1	1	 0	0	0	2	1	8	1	2	0	4
Hybridization6_Bmp4	1	0	0	0	0	0	0	0	1	0	 0	0	0	0	0	0	1	1	0	0
Hybridization6_ltpr2	4	0	0	1	0	0	1	0	2	1	 3	0	1	2	3	0	0	0	0	0
Hybridization6_Vip	13	1	2	4	30	1	3	2	1	4	 0	11	2	5	1	7	2	3	6	1
Hybridization4_Cnr1	0	0	0	0	65	5	0	0	0	0	 2	0	9	0	17	0	0	0	0	5
Hybridization4_Plp1	16	0	0	0	8	0	0	6	0	0	 0	0	0	10	1	27	5	1	2	0
Hybridization4_Vtn	0	0	0	2	4	0	2	1	1	0	 0	3	1	2	2	2	0	0	0	3
Hybridization7_Rorb	4	0	0	1	0	4	0	0	2	3	 0	27	14	0	0	1	0	1	0	1
Hybridization7_Sox10	52	0	1	1	3	3	13	3	19	33	 1	4	0	10	12	40	15	32	1	0
Hybridization7_Ctps	6	3	9	15	3	3	3	5	2	1	 6	4	12	14	1	2	0	2	1	6
Hybridization11_Syt6	1	16	20	0	0	0	3	21	1	2	 4	0	1	11	1	3	0	0	12	2
Hybridization11_Tbr1	4	13	36	6	2	5	9	12	6	15	 30	19	30	0	3	2	0	0	10	4
Hybridization11_Tmem6	2	0	0	3	1	1	2	2	1	2	 4	1	3	1	1	0	0	0	0	4
Hybridization8_Pdgfra	1	1	2	0	1	0	2	1	20	1	 1	1	1	2	26	0	0	0	1	6
Hybridization8_Serpinf1	13	1	2	6	2	4	2	1	10	2	 0	5	10	8	6	5	6	2	2	2
Hybridization8_Pthlh	2	0	0	0	8	0	1	1	0	0	 0	0	1	1	0	0	0	0	1	0
Hybridization10_Crhbp	2	0	1	0	0	0	0	0	0	3	 0	0	0	0	0	0	0	0	0	0
Hybridization10_Crh	2	0	2	0	3	0	6	1	0	2	 1	1	1	1	0	0	0	3	1	0
Hybridization10_ApIn	3	5	2	31	0	2	3	4	8	5	 0	2	3	1	2	3	1	3	5	1
Hybridization9_Lamp5	6	38	51	126	0	1	52	44	51	0	 4	1	168	5	5	0	0	1	3	90
Hybridization9_Lum	1	0	0	3	0	0	0	0	3	6	 0	0	0	1	1	0	0	0	0	0
Hybridization9_AnIn	19	1	1	1	2	2	2	6	3	23	 0	1	10	3	8	14	8	11	3	0
Hybridization12_Kcnip	1	25	50	14	6	3	20	14	7	0	 25	23	64	0	2	2	0	0	3	22
Hybridization12_Slc32a1	2	1	2	2	22	0	1	0	2	0	 0	1	1	0	0	4	0	0	0	0
Hybridization12_Vtn	2	2	0	1	2	0	0	0	0	2	 0	1	0	0	2	0	0	0	0	1
Hybridization5_Acta2	3	1	1	1	1	0	1	4	0	2	 0	0	2	0	7	6	0	4	1	0
Hybridization5_Cpne5	0	4	1	1	1	0	2	9	2	0	 3	0	10	0	3	0	0	0	3	16
Hybridization5_Klk6	0	0	0	0	0	0	0	0	0	0	 0	0	0	0	0	2	0	1	0	0
Hybridization3_Mfge8	6	0	1	2	0	2	2	3	2	13	 2	2	2	1	7	4	0	2	0	7
Hybridization3_Mrc1	14	2	2	3	2	0	0	6	1	19	 2	2	26	4	9	0	1	6	2	5
Hybridization3_Hexb	10	0	3	6	1	0	3	4	1	3	 9	2	4	3	6	2	0	0	1	2
Hybridization2_Gad2	7	4	3	5	65	1	7	1	2	12	 2	6	9	2	2	2	1	9	3	11
Hybridization2_Flt1	0	0	0	0	0	0	0	0	0	0	 0	3	0	0	0	0	0	0	0	0
Hybridization2_Gfap	57	0	1	0	1	0	3	3	0	32	 3	1	4	5	0	0	1	2	0	1
Hybridization13_Cnr1	1	1	2	14	56	3	6	7	5	3	 3	3	25	1	2	3	0	0	0	6
Hybridization13_Ttr	2	0	0	1	1	0	1	0	1	13	 0	2	0	3	3	1	1	1	3	0
Hybridization13_Plp1	10	5	3	0	7	0	0	8	5	33	 3	1	2	35	0	4	7	33	4	1

Megabytes

Terabytes

Cells

 1124
 2325
 2400
 241
 648
 5992
 275
 2573
 330
 1149
 ...
 5162
 532
 3607
 3251
 7173
 2757
 1228
 1234
 7797
 4653

 13
 11
 28
 12
 7
 6
 14
 24
 5
 3
 ...
 57
 20
 6
 8
 5
 5
 0
 14
 18
 5

Cell segmentation

Nuclei

Panagiotakis *et al*. IEEE 2018

Membrane

Stapel et al. Development 2016

Cell body

Codeluppi *et al*. 2018 Nature Methods

Limitations:

- Counter stains (membrane, nuclei, organelles, cell fill)
- Unclear ground truth
- Resolution

www.microns-explorer.org/

www.microns-explorer.org/

Limitations:

- Counter stains (membrane, nuclei, organelles, cell fill)
- Unclear ground truth
- Resolution

Progress:

- Counter stains
- Algorithms
- Segmentation free approaches

seqFISH+

CosMx

Eng *et al*. 2019 Nature. 10,000 plex

Khafizov et al. 2024 BioRxiv. 18,993 plex

MERFISH

Zhang et al. 2023 Nature. Full mouse brain

MERFISH

Xia et al. 2019 PNAS. 10,000 plex

Barcoded smFISH

Methods: MERFISH, seqFISH, EEL FISH

Companies: Vizgen, Spatial Genomics, Nanostring/Bruker, Resolve

Resolution: Diffraction limited (150-300nm)

Detection efficiency: 70-90% *

Gene throughput: 100 - 19,000

Spatial throughput: several mm² - cm²

Rolling circle amplification

Padlock probe, Targeted, Enzymatic amplification

RCA amplified barcoded FISH

HybISS

HybISS

Mattsson Langseth et al. 2021 Nature Communications Biology

Gylborg et al. 2020 Nucleic Acids Research

Amplified barcoded smFISH

Methods: HybISS, HybRISS Companies: 10X Xenium

Resolution: Amplicon size ~0.5-1 um

Detection efficiency: 10 - ~50%

Gene throughput: 100 – 1,000

Spatial throughput: cm² - several cm²

Microscopy

Barcoded FISH in situ Sequencing

Sequencing

Spatial Sequencing

Spatial tagging

in situ sequencing

Rolling circle amplification

Padlock probe. Targeted

in situ sequencing (ISS)

Sequencing by ligation

in situ sequencing (ISS)

Barcode sequencing

Qian et al. 2020 Nature Methods

De-novo sequencing

Ke et al. 2013 Nature Methods

ISS is the predecessor of Xenium

STARmap

SEDAL sequencing

Hailing et al. 2023 Nature

Sequencing in situ

Methods: ISS, STARmap. Commercial: (Xenium), StellarOmics

Resolution: Amplicon size (0.5 - 1um)

Detection efficiency: 10 - ~50%

Gene throughput: 10 - 1,000

Spatial throughput: several mm² - several cm²

Microscopy

Barcoded FISH in situ Sequencing

Sequencing

Spatial Sequencing

Spatial tagging

RNA moves

Barcodes move

Microscopy

Barcoded FISH in situ Sequencing

Sequencing

Spatial Sequencing

Spatial tagging

RNA moves

Barcodes move

Spatial transcriptomics

Microarray with spatial barcodes

Stahl et al. Science 2016

Spatial transcriptomics

Stahl et al. Science 2016

10X Visium

Spot size: 55 µm

Spot spacing: 100 µm

10X Visium

10X Visium

300

Visium

GeoMX DSP

Stereo-seq ·

slide-seq2 ·

Tomo-seq -

CosMX -ISS -Xenium smFISH manual dissection HybISS RNAscope SCRINSHOT seqFISH+ EEL FISH

Molecular Cartography

Other GeoMX WTA

> LCM-MERFISH

> > ST

Maynard et al. 2021 Nature Neuroscience

10X Visium HD

10X Visium HD

10X Visium HD

10X Visium HD

10X CytAssist

Visium slide

Stereo-seq

220nm DNA nanoballs

Chen et al. Cell 2022

Stereo-seq

Chen et al. Cell 2022

Seq-Scope, Open-ST, Nova-ST

Seq-Scope

Nova-ST

Cho et al. 2021 Cell

Schott et al. 2024 Cell Reports Methods

Poovathingal et al. 2024 Cell Reports Methods

Spatial Sequencing

Methods: ST, Slide-seq, Stereo-seq. Commercial: 10X Visium, Curio Seeker

Resolution: Spot size 220nm - 100um (but RNA diffuses)

Detection efficiency: 0.1 - 5%

Gene throughput: Full transcriptome

Spatial throughput: several mm² – several cm²

Microscopy

Barcoded FISH in situ Sequencing

Sequencing

Spatial Sequencing

Spatial tagging

RNA moves

Barcodes move

DBiT-seq

Liu et al. Cell 2022

DBiT-seq

Deng et al. Science 2022

Liu *et al*. Cell 2022

Slide-tags

sci-Space

73um spots, 222um between spots, 2.2% of nuclei sampled

Srivatsan et al. Science 2022

Spatial Tagging

Methods: DBiT-seq, Slide-tags, sci-Space Commercial: DBiT-seq, Curio Trecker

Resolution: 10 – 100µm

Detection efficiency: 1 - 30%

Gene throughput: Full transcriptome

Spatial throughput: several mm² – cm²

Microscopy

Barcoded FISH in situ Sequencing

Sequencing

Spatial Sequencing

Spatial tagging

NSSC 6

RNA moves

Barcodes move

Further reading

REVIEW ARTICLE https://doi.org/10.1038/s41592-022-01409-2

Check for updates

Museum of spatial transcriptomics

Lambda Moses ¹ and Lior Pachter ^{1,2}

The function of many biological systems, such as embryos, liver lobules, intestinal villi, and tumors, depends on the spatial organization of their cells. In the past decade, high-throughput technologies have been developed to quantify gene expression in space, and computational methods have been developed that leverage spatial gene expression data to identify genes with spatial patterns and to delineate neighborhoods within tissues. To comprehensively document spatial gene expression technologies and data-analysis methods, we present a curated review of literature on spatial transcriptomics dating back to 1987, along with a thorough analysis of trends in the field, such as usage of experimental techniques, species, tissues studied, and computational approaches used. Our Review places current methods in a historical context, and we derive insights about the field that can guide current research strategies. A companion supplement offers a more detailed look at the technologies and methods analyzed: https://pachterlab.github.io/LP_2021/.

https://pachterlab.github.io/LP_2021/