(pre)preprocessing of imagingbased spatial transcriptomics data

Swiss Institute of Bioinformatics Spatial Omics Data Analysis

Helena L. Crowell — January 21st, 2025 in Lausanne, Switzerland

H&E staining of a human CRC biospy reference premalignant cancerous

H&E staining of a human CRC biospy reference premalignant cancerous

IF staining

high-throughput RNA sequencing

fragmentation, reverse transcription, mapping

of raw counts per transcript varies with transcript length, GC content, sequencing depth

normalization strategies aim to minimize these effects & "there's awareness that misinterpretation of results where biological & technical effects are correlated"

quality control for img-ST is ways from (sc)RNA-seq

high-throughput RNA sequencing

fragmentation, reverse transcription, mapping

of raw counts per transcript varies with transcript length, GC content, sequencing depth

normalization strategies aim to minimize these effects & "there's awareness that" misinterpretation of results where biological & technical effects are correlated"

quality control for img-ST is ways from (sc)RNA-seq

imaging-based spatial transcriptomics

tissue preparation, chemistry, imaging

tissue damage/detachment, image/transcript loss, varying detection across space & experiments

high-throughput RNA sequencing

fragmentation, reverse transcription, mapping

of raw counts per transcript varies with transcript length, GC content, sequencing depth

normalization strategies aim to minimize these effects & "there's awareness that" misinterpretation of results where biological & technical effects are correlated"

quality control for img-ST is ways from (sc)RNA-seq

imaging-based spatial transcriptomics

tissue preparation, chemistry, imaging

tissue damage/detachment, image/transcript loss, varying detection across space & experiments

"sources of these [...] are known [but] it's often unlcear how often errors occur, how to best detect & describe [them] & how [they] impact downstream analyses [...]"

quality control for img-ST is ways from (sc)RNA-seq

DISCLAIMER: We don't really know what's best (yet) – I'll try to summarize some recent ideas, and personal pains.

high-throughput RNA sequencing

fragmentation, reverse transcription, mapping

of raw counts per transcript varies with transcript length, GC content, sequencing depth

normalization strategies aim to minimize these effects & "there's awareness that misinterpretation of results where biological & technical effects are correlated"

imaging-based spatial transcriptomics

tissue preparation, chemistry, imaging

tissue damage/detachment, image/transcript loss, varying detection across space & experiments

┢

"sources of these [...] are known [but] it's often unlcear how often errors occur, how to best detect & describe [them] & how [they] impact downstream analyses [...]"

- input: transcript locations + DAPI staining ullet
- series of **binary masks** (& combinations thereof), trained on few manually annotated sections

- input: transcript locations + DAPI staining
- series of binary masks (& combinations thereof),
 trained on few manually annotated sections

 each location is classified into one of five categories

- **tissue** within image volumen
- detachment (tissue not imaged)
- ventricle (no tissue but no loss)
- damage (no tissue due to loss)
- off-tissue (outside section)

Martin et al. (2024), bioRxiv 2024.12.04.626766

tissue

perfusion rate

 log files can reveal inconsitencies (e.g., blockage) of volume per time during solution exchange

data loss

 iterative comparison of transcript counts between neighboring fields of view (FOVs)

detection efficiency

 across section: periodicity, through section: p6/p0 ratio

transcript density

 should vary across section, but little between sections of comparable quality

MerQuaCo proposes a pixel classifier & quality metrics

perfusion rate

• log files can reveal inconsitencies (e.g., blockage) of volume per time during solution exchange

data loss

 iterative comparison of transcript counts between neighboring fields of view (FOVs)

detection efficiency

 across section: periodicity, through section: p6/p0 ratio

transcript density

 should vary across section, but little between sections of comparable quality

MerQuaCo proposes a pixel classifier & quality metrics

perfusion rate

• log files can reveal inconsitencies (e.g., blockage) of volume per time during solution exchange

data loss

 iterative comparison of transcript counts between neighboring fields of view (FOVs)

detection efficiency

 across section: periodicity, through section: p6/p0 ratio

transcript density

 should vary across section, but little between sections of comparable quality

MerQuaCo proposes a pixel classifier & quality metrics

 filtering based on standard scRNA-seq QC metrics may bias again smaller & transcriptionally less complex cells

4.5

 filtering based on standard scRNA-seq QC metrics may bias again smaller & transcriptionally less complex cells

 filtering based on standard scRNA-seq QC metrics may bias again smaller & transcriptionally less complex cells

but there's more we could be looking at... some QC examples

RNA per area & IF markers

but there's more we could be looking at... some QC examples

RNA per area & IF markers

spatial organization of excluded cells might indicate a bias against specific types (but it depends!)

img-ST data stem from serial imaging of fields of view (FOVs)

H&E staining

REF TVA CRC

Crowell et al. Tejpar & Heyne (in prep.)

img-ST data stem from serial imaging of fields of view (FOVs)

FOV placement H&E staining

REF TVA CRC

Crowell et al. Tejpar & Heyne (in prep.)

img-ST data stem from serial imaging of fields of view (FOVs)

H&E staining -> FOV placement

REF TVA CRC

DAPI PanCK CD45 CD68

Crowell et al. Tejpar & Heyne (in prep.)

img-ST data stem from serial imaging of fields of view (FOVs)

H&E staining -> FOV placen

REF TVA CRC

changes in optical performance lead to lower optical resolution at FOV edges

Crowell *et al.* Campo & Pascual-Reguant (in prep.)

10

changes in optical performance lead to lower optical resolution at FOV edges

lack of stiching leads to cell fragmentation, duplication & inconsistencies

https://albertvilella.substack.com/p/comparison-between-10x-genomics-xenium

border cells have fewer counts & can highlight other artefacts

points = cells (across all FOVs), lines = running median

border cells have fewer counts & can highlight other artefacts

points = cells (across all FOVs), lines = running median

besides fewer counts, border cells are smaller & slimmer

plots courtesy of Davide Risso

area

aspect ratio

area

aspect ratio

outliers

(e.g., thresholding on MADs of univariate distributions)

area

counts

aspect ratio

$logit(F) = \beta_0 + \beta_1 \log \frac{count}{area} + \beta_2 |\log(aspect ratio)| \cdot I_{\{d < threshold\}}$

outliers

(e.g., thresholding on MADs of univariate distributions)

area

counts

aspect ratio

$\text{logit}(F) = \beta_0 + \beta_1 \log \frac{\text{count}}{\text{area}} + \beta_2 |\log(\text{aspect ratio})| \cdot I_{\{d < \text{threshold}\}}$

outliers

flag score

area

counts

aspect ratio

$\text{logit}(F) = \beta_0 + \beta_1 \log \frac{\text{count}}{\text{area}} + \beta_2 |\log(\text{aspect ratio})| \cdot I_{\{d < \text{threshold}\}}$

outliers

flag score

DAPI + segmentation

debris is usually segmented, yet hard to distinguish

debris is usually segmented, yet hard to distinguish

debris is usually segmented, yet hard to distinguish

 scaling factors for cells in R are systematically larger

> 100-gene panel skewed towards some region R

 gene expression for cells in R are systematically smaller

• scaling factors for cells in R are systematically larger

> 100-gene panel skewed towards some region R

gene expression for cells in R ulletare systematically **smaller**

systematic biases affect analyses to evaluate differential gene expression & spatially variable genes

larger/more representative panels help mitigate region-specific effects

Differential expression в -log (p-value) correspondence 50-gene gene panel red gene pa 100 250 Ske 50 150 250 0 Full gene panel 100-gene gene panel Φ 250 250 ed gene స 50 150 250 0 Full gene panel 500-gene gene panel panel 250 d ge 100 š 150 250 50 0 Full gene panel d gene panel 100 250 1000-gene gene panel ň 150 250 50 0 Full gene panel 5000-gene gene panel ene par 250 9g 19g ல் 0 50 150 250 Full gene panel 8861-gene gene panel red gene pan 100 250 80 50 50 150 250 Full gene panel

- skewed panels of 50...5,000 vs. all genes (simulated based on scRNA-seq data)
- differences are observed for skewed panels of all sizes, but their extent decreases as panel size increases

larger/more representative panels help mitigate region-specific effects

Differential expression В -log..(p-value) correspondence 50-gene gene panel σğ ð 50 150 250 0 Full gene panel 100-gene gene panel 250 250 250 50 150 the second 0 Full gene panel 500-gene gene panel 250 250 άĝ 150 250 ō. 0 50 Full gene panel 1000-gene gene panel 10 pan 250 0 C 150 250ť'n 0 50 Full gene panel 5000-gene gene panel 250 au p p p 250 0 50 150 ŝ Full gene panel 8861-gene gene panel ed gene par 100 250 ŏ` 0 50 150 250 Full gene panel

- skewed panels of 50...5,000 vs. all genes (simulated based on scRNA-seq data)

 differences are observed for skewed panels of all sizes, but their extent decreases as panel size increases

CD68+ B cells — what's going on here?

CD68+ B cells — what's going on here?

DAPI CD45

CD19 MMP9 CD68 LYZ

CD68+ B cells — what's going on here?

DAPI CD45

CD19 MMP9 CD68 LYZ

Article | January 27 2028

Tingible body macrophages arise from lymph noderesident precursors and uptake B cells by dendrites

Neta Burwicz 🤨 , List Stoler-Barsk 🕲 , Niklas Schwan 🕲 , Amsb Bandyopadhyay 😉 , Michael Meyer-Hermann 🔨 , Ziv Shulman 🔤 😉

+ Author and Article Information

J Exp Med (2020) 220 (4): e20222173. https://doi.org/10.1084/jorn.20222178 | Article history 🔄

B cells macrophages

spatial bleeding manifests in RNA counts, hence PCs, and UMAPs

- BC_mem BC_naive DC endo epi_apical epi_basal epi_trans1 epi_trans2 FDC FRC GCBC_DZ GCBC_LZ GCBC_TBM 🔵 gran 🔵 ĬĽC macro mast mono PB PC_lgA1 PC_IgM PDC TBM TC_CD4
- TC_CD8

spatial bleeding manifests in RNA counts, hence PCs, and UMAPs

spatial bleeding manifests in RNA counts, hence PCs, and UMAPs

malignant fibroblast macrophage

bleeding occurs in 3D — around, above & below cells

enterocyte goblet stem+TA

malignant fibroblast macrophage

admixtures occur at cellular periphery

 fibroblast A malignant • non-marker 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

bleeding occurs in 3D — around, above & below cells

enterocyte goblet stem+TA

malignant fibroblast macrophage

admixtures occur at cellular periphery

fibroblast A malignant • non-marker 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

bleeding occurs in 3D — around, above & below cells

enterocyte goblet stem+TA

admixtures occur at upper/lower z-plane

manual annotation into tumor & stromal regions

NSCLC (SMI)

DE genes between regions reflect compositional differences (not differences in state)

DE genes between regions reflect compositional differences (not differences in state)

 comparing regions, genes upregulated in fibroblasts are **epithelial markers**

Mitchel et al. propose NMF + CRF clean-up to mitigate spatial bleeding

Label admixture molecules using CRF

Mitchel et al. propose NMF + CRF clean-up to mitigate spatial bleeding

1. Construct KNN graph per cell

2. Recover pure expression profiles using weighted NMF Label admixture molecules using CRF

1. Construct KNN graph per cell

- **subcellular features** can include
 - recurrent admixture patterns (e.g., between frequently co-occuring cell types)
 - true cellular structures (e.g., ER, nuclei, polarization)

Mitchel et al. propose NMF + CRF clean-up to mitigate spatial bleeding

2. Recover pure expression profiles using weighted NMF Label admixture molecules using CRF
FastReseg uses transcript locations to refine img-based segmentation

- transcript scoring based on initial host cell
- flag spatial doublets as putative segmentation errors
- flag misassigned transcripts within flagged cells only
- correct counts (but not • segmentation boundaries)

FastReseg uses transcript locations to refine img-based segmentation

- flag B cells surrounding black holes
- flag macrophage-related genes
- correct B cell counts & create new macrophages

CD19 MMP9 CD68 LYZ

Wu et al. (2024), BioRxiv 2024.12.05.627051

infrastructure for handling img-ST data in R

Righelli, Weber, Crowell et al. (2022) Bioinformatics 38(11):3128-3131

SpatialExperiment

infrastructure for handling img-ST data in R

infrastructure for handling img-ST data in R

MoleculeExperiment

Couto et al. (2023) bioRxiv 2023.05.16.541040

infrastructure for handling img-ST data in Python

Marconato et al. (2024) Nature Methods s41592-024-02212-x

infrastructure for handling img-ST data in Python

technology

- He et al. (2022). High-plex Multiomic Analysis in FFPE at Subcellular Level by Spatial Molecular Imaging. bioRxiv 2021.11.03.467020

segmentation

- Stringer et al. (2021). Cellpose: a generalist algorithm for cellular segmentation. Nature Methods 18(1):100-106
- Petukhov et al. (2021). Cell segmentation in imaging-based spatial transcriptomics. Nature Biotechnology 40:345-354
- Wu et al. (2024). FastReseg: using transcript locations to refine image-based cell segmentation results in spatial transcriptomics. bioRxiv 2024.12.05.627051
- Mitchel et al. (2024). Impact of Segmentation Errors in Analysis of Spatial Transcriptomics Data. bioRxiv 2025.01.02.631135

miscellaneous

- Martin et al. (2024). MerQuaCo: a computational tool for quality control in image-based spatial transcriptomics. bioRxiv 2024.12.04.626766
- NanoString scratch space: <u>https://nanostring-biostats.github.io/CosMx-Analysis-Scratch-Space</u> normalization
- Bhuva et al. (2024): Library size confounds biology in spatial transcriptomics data. Genome Biology 25:99
- Atta et al. (2024). Gene count normalization in single-cell imaging-based spatially resolved transcriptomics. Genome Biology 25:153

infrastructure

- Moses et al. (2023). Voyager: exploratory single-cell genomics data analysis with geospatial statistics. bioRxiv 2023.07.20.549945
- Marconato et al. (2024). SpatialData: an open and universal data framework for spatial omics. Nature Methods <u>s41592-024-02212-x</u>

benchmarks

- Wang et al. (2023). Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. bioRxiv 2023.12.07.570603
- Cook et al. (2023): A comparative analysis of imaging-based spatial transcriptomics platforms. bioRxiv 2023.12.13.571385
- Rademacher et al. (2024): Comparison of spatial transcriptomics technologies using tumor cryosections. bioRxiv 2024.04.03.586404
- Ren et al. (2024). Systematic Benchmarking of High-Throughput Subcellular Spatial Transcriptomics Platforms. bioRxiv 2024.12.23.630033

• Khafizov et al. (2024). Sub-cellular imaging of the entire protein-coding human transcriptome (18933-plex) on FFPE tissue using SMI. bioRxiv 2024.11.27.625536

• Righelli, Weber, Crowell et al. (2022). Spatial Experiment: infrastructure for spatially resolved transcriptomics data in R using Bioconductor. Bioinformatics 38(11):3128-3131 • Couto et al. (2023). MoleculeExperiment enables consistent infrastructure for molecule-resolved spatial transcriptomics data in Bioconductor. bioRxiv 2023.05.16.541040

