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quality control for img-ST is ways from (sc)RNA-seq

Martin et al. (2024), bioRxiv 2024.12.04.626766

# of raw counts per transcript varies with 
transcript length, GC content, sequencing depth

fragmentation, reverse transcription, mapping

normalization strategies aim to minimize 
these effects & “there’s awareness that  

misinterpretation of results where biological  
& technical effects are correlated”

high-throughput RNA sequencing
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tissue damage/detachment, image/transcript loss, 
varying detection across space & experiments

tissue preparation, chemistry, imaging

imaging-based spatial transcriptomics

# of raw counts per transcript varies with 
transcript length, GC content, sequencing depth

fragmentation, reverse transcription, mapping

normalization strategies aim to minimize 
these effects & “there’s awareness that  

misinterpretation of results where biological  
& technical effects are correlated”

high-throughput RNA sequencing

“sources of these […] are known  [but] 
it’s often unlcear how often errors occur,  
how to best detect & describe [them] & 

how [they] impact downstream analyses […]”

DISCLAIMER: We don’t really know what’s best (yet) — 
I’ll try to summarize some recent ideas, and personal pains.
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• each location is classified 
into one of five categories 
• tissue within image volumen

• detachment (tissue not imaged) 

• ventricle (no tissue but no loss)

• damage (no tissue due to loss)

• off-tissue (outside section)

• input: transcript locations + DAPI staining

• series of binary masks (& combinations thereof), 

trained on few manually annotated sections 

RF = random  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spatial organization of excluded cells might indicate a bias against specific types (but it depends!)

B−2080151−01−18_2 (N = 656,632; 39,861)

retained 
excluded
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lack of stiching leads to cell fragmentation, duplication & inconsistencies

• arrows = missing transcripts

• partial cells are the same between  

FOVs, but come with unique IDs

https://albertvilella.substack.com/p/comparison-between-10x-genomics-xenium
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points = cells (across all FOVs), lines = running median

border cells have fewer counts & can highlight other artefacts

• compute each cell’s distance to each FOV border

• plot counts vs. distance, stratified by direction

top-left corners exhibit 
dimmer IF signals

left right

bottom

top

field of view (FOV)

Crowell et al. Campo & Pascual-Reguant (in prep.)



besides fewer counts, border cells are smaller & slimmer  

plots courtesy of Davide Risso 
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SpaceTrooper proposes a flag score combining several metrics

https://github.com/drighelli/SpaceTrooper

aspect ratio

counts area outliers

(e.g., thresholding on 
MADs of univariate 

distributions)

DAPI + segmentation

logit(F) = β0 + β1 log
count
area

+ β2 | log(aspect ratio) | ⋅ I{d<threshold}

flag score
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library size normalization on non-representative panels introduces biases

Atta et al. (2024), Genome Biology 25:153

• scaling factors for cells in R 
are systematically larger

100-gene panel skewed 
towards some region R

• gene expression for cells in R 
are systematically smaller 

• systematic biases affect  
analyses to evaluate 
differential gene expression 
& spatially variable genes
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larger/more representative panels help mitigate region-specific effects

Atta et al. (2024), Genome Biology 25:153
Atta et al. (2024), Genome Biology 25:153

• skewed panels of 50…5,000 vs. all genes 
(simulated based on scRNA-seq data)


• differences are observed for skewed panels of all sizes, 
but their extent decreases as panel size increases

“cell area may serve as a proxy where 
volume estimates are not avaiable”



epi1
epi2
Epi

gran
GCBC/macro

DZ_GCBC
LZ_GCBC

epi3
MBC
NBC

TC_CD4
ILC

TC_CD8
DC

mono/macro
endo
FDC

retic_fibro
PC

PDC

CD
83

M
S4

A1
CD

19
IG

HD
IG

HM
CD

74
CI

IT
A

HL
A−

DP
A1

HL
A−

DR
B

HL
A−

DR
A

HL
A−

DP
B1

HL
A−

DQ
B1

/2
IG

KC
M

ZB
1

JC
HA

IN
XB

P1
IG

HA
1

IG
HG

1
IG

HG
2

CD
27

IK
ZF

3
IT

G
AL

PT
PR

C
CO

TL
1

PF
N1

AR
HG

DI
B

RA
CK

1
RP

L2
1

RP
L3

7
RP

L3
2

RP
L3

4
LT

B
CD

52
CD

53
CD

37
PP

IA
RG

S1
3

CD
38

HM
G

N2
TO

P2
A

NU
SA

P1
H2

AZ
1

H4
C3

HM
G

B2
ST

M
N1

M
AR

CK
SL

1
BA

SP
1

TC
L1

A
CD

79
A

CD
22

P2
RX

5
CS

F2
RA CD

4
M

S4
A6

A
CT

SD
PS

AP
CD

68
M

M
P9

AP
O

E
AP

O
C1 LY

Z
IT

G
AX

SA
T1

C1
Q

C
C1

Q
A

KR
T1

5
CO

L1
7A

1
IL

1R
2

EG
FR

IT
G

B8
FG

FR
3

LT
F

KR
T5

KR
T1

4
JA

G
1

YB
X3

IT
M

2B
S1

00
A6

SO
D2

CC
L2

0
KR

T1
9

CD
24

HS
PB

1
CD

9
DU

SP
1

IL
1R

N
KR

T1
6

KR
T6

A/
B/

C
S1

00
A8

S1
00

A9
CS

TB
TA

CS
TD

2
NE

AT
1

IL
36

G
CS

F2
RB

CS
F1

R
CD

14
TL

R2
TN

FR
SF

1A
AC

KR
3

IL
7R

G
NL

Y
PL

AC
8

SE
LL

ZF
P3

6
G

ZM
B

IL
3R

A
IL

6S
T

M
AF

PD
CD

1
IC

A1
SL

CO
2B

1
PT

G
DS CL

U
VC

AM
1

SR
G

N
CX

CL
13

TX
K

KL
RK

1
NE

LL
2

CC
L5

G
ZM

K
IL

32
FY

B1
CD

3D CD
2

CD
3E

TC
F7

FY
N

CD
44

B2
M

M
HC

 I
M

AL
AT

1
AT

M
IL

16
CD

48
IF

IT
M

1
KL

F2
PE

CA
M

1
IF

IT
M

3
SP

AR
CL

1
HS

PG
2

CO
L4

A2
VW

F
RG

S5
M

G
P

VI
M

IG
FB

P7
CO

L1
A1

CC
L2

1
CC

L1
9

CX
CL

14
DC

N
LU

M
G

0S
2

CX
CL

8
RG

S2
ID

O
1

TN
FR

SF
13

B

−2 −1 0 1 2

z−scaled mean
expression

TN1 (N = 363,966)

Crowell et al. Campo & Pascual-Reguant (in prep.)

CD68+ B cells — what’s going on here?
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spatial bleeding manifests in RNA counts, hence PCs, and UMAPs

Crowell et al. Campo & Pascual-Reguant (in prep.)
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DE genes between regions reflect compositional differences (not differences in state)

• manual annotation into 
tumor & stromal regions

• tumor is dominated by malignant, 
stroma is dominated by other cells

• comparing regions, genes upregulated 
in fibroblasts are epithelial markers
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Mitchel et al. propose NMF + CRF clean-up to mitigate spatial bleeding

• subcellular features can include

• recurrent admixture patterns 

(e.g., between frequently  
co-occuring cell types)


• true cellular structures 
(e.g., ER, nuclei, polarization)
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based on initial host cell 

• flag spatial doublets  
as putative segmentation errors


• flag misassigned transcripts 
within flagged cells only


• correct counts (but not 
segmentation boundaries)
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FastReseg uses transcript locations to refine img-based segmentation

• transcript scoring 
based on initial host cell 

• flag spatial doublets  
as putative segmentation errors


• flag misassigned transcripts 
within flagged cells only


• correct counts (but not 
segmentation boundaries)

CD19 MMP9 CD68 LYZ

• flag B cells surrounding black holes

• flag macrophage-related genes

• correct B cell counts & 

create new macrophages
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Why? Because infrastructure  
around single-cell data is large!
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Moses et al. (2023) bioRxiv 2023.07.20.549945 

SpatialFeatureExperiment

Couto et al. (2023) bioRxiv 
2023.05.16.541040

MoleculeExperiment
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appendix — references & resources

technology 
• He et al. (2022). High-plex Multiomic Analysis in FFPE at Subcellular Level by Spatial Molecular Imaging. bioRxiv 2021.11.03.467020

• Khafizov et al. (2024). Sub-cellular imaging of the entire protein-coding human transcriptome (18933-plex) on FFPE tissue using SMI. bioRxiv 2024.11.27.625536

segmentation 
• Stringer et al. (2021). Cellpose: a generalist algorithm for cellular segmentation. Nature Methods 18(1):100-106

• Petukhov et al. (2021). Cell segmentation in imaging-based spatial transcriptomics. Nature Biotechnology 40:345-354

• Wu et al. (2024). FastReseg: using transcript locations to refine image-based cell segmentation results in spatial transcriptomics. bioRxiv 2024.12.05.627051

• Mitchel et al. (2024). Impact of Segmentation Errors in Analysis of Spatial Transcriptomics Data. bioRxiv 2025.01.02.631135

miscellaneous 
• Martin et al. (2024). MerQuaCo: a computational tool for quality control in image-based spatial transcriptomics. bioRxiv 2024.12.04.626766

• NanoString scratch space: https://nanostring-biostats.github.io/CosMx-Analysis-Scratch-Space

normalization 
• Bhuva et al. (2024): Library size confounds biology in spatial transcriptomics data. Genome Biology 25:99

• Atta et al. (2024). Gene count normalization in single-cell imaging-based spatially resolved transcriptomics. Genome Biology 25:153

infrastructure 
• Righelli, Weber, Crowell et al. (2022). SpatialExperiment: infrastructure for spatially resolved transcriptomics data in R using Bioconductor. Bioinformatics 38(11):3128-3131

• Couto et al. (2023). MoleculeExperiment enables consistent infrastructure for molecule-resolved spatial transcriptomics data in Bioconductor. bioRxiv 2023.05.16.541040

• Moses et al. (2023). Voyager: exploratory single-cell genomics data analysis with geospatial statistics. bioRxiv 2023.07.20.549945

• Marconato et al. (2024). SpatialData: an open and universal data framework for spatial omics. Nature Methods s41592-024-02212-x

benchmarks 
• Wang et al. (2023). Systematic benchmarking of imaging spatial transcriptomics platforms in FFPE tissues. bioRxiv 2023.12.07.570603

• Cook et al. (2023): A comparative analysis of imaging-based spatial transcriptomics platforms. bioRxiv 2023.12.13.571385

• Rademacher et al. (2024): Comparison of spatial transcriptomics technologies using tumor cryosections. bioRxiv 2024.04.03.586404

• Ren et al. (2024). Systematic Benchmarking of High-Throughput Subcellular Spatial Transcriptomics Platforms. bioRxiv 2024.12.23.630033
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