
Cell segmentation free analysis of      
spatially resolved transcriptomics data

Naveed Ishaque
Berlin Institute of Health at Charité University Hospital, Germany
ELIXIR-Germany
ELIXIR SPODA 2025



Resolution revolution – transcriptomics

Image credit: Bo Xia (@BoXia7)



Resolution revolution – transcriptomics: bulk

Image credit: Bo Xia (@BoXia7)
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Resolution revolution – transcriptomics: single cell

Image credit: Bo Xia (@BoXia7)
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Resolution revolution – transcriptomics: spatial

Image credit: Bo Xia (@BoXia7)
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Emerging state of the art for spatial transcriptomics

Size and resolution Pseudo 3D

➔

Real 3D

Multi-omics

Liu, Yang, Deng et al. Cell 183, 1665-1681 (2020); Chen et al, Cell 185, 1777-1792 (2022); Fang et al, eLife12:RP90029 (2023); 

Yao, van Velthoven, Kunst et al. Nature 624, 317–332 (2023); Mueller-Boetticher et al. bioRxiv (2024) 



Spatial transcriptomics methodologies

Adapted from Rao et al (2021) Nature



Spatial transcriptomics methodologies: NGS-based

Adapted from Rao et al (2021) Nature



Spatial transcriptomics methodologies: NGS-based

How large are the “spots?”
ST 100 μm
Visium 55 μm
DBiT-seq 10-50 μm
Slide-Seq 10 μm
HDST 2 μm
PIXEL-seq 1.22 μm
Seq-Scope 0.5-0.8μm
Stereo-seq 0.22 μm

Supra-cellular

Sub-cellular

Cellular

Adapted from Rao et al (2021) Nature



Spatial transcriptomics methodologies: imaging-based

Adapted from Rao et al (2021) Nature



Spatial transcriptomics methodologies: imaging-based

Adapted from Rao et al (2021) Nature

MERFISH/VizGen, ISS/Xenium, Molecular Cartography, 
CosMx, Barista-seq, seqFISH, STARmap, EEL-FISH, …



Spatial resolution



Spatial resolution: microdissection, e.g. TIVA, Geo-seq, etc



Spatial resolution: supracellular grid, e.g. Visium



Spatial resolution: ~1-3 cell profiling, e.g. Slide-Seq/Slide-tags



Spatial resolution: sub-cellular, e.g. VisiumHD



Spatial resolution: single molecule, e.g. MERSCOPE, cosMX, Xenium



Resolution of spatial transcriptomics technologies

Spatial resolution

Microdissection

~3-20 Cells

~1-3 Cell

sub cellular

Single Molecule

Example Technologies

TIVA, Geo-seq, etc

ST, Visium, etc

Curio seeker, VisiumHD, etc

VisiumHD, openST, stereo-seq

Xenium, MERSCOPE, molecular 
cartography, STARmap, etc
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Resolution of spatial transcriptomics and challenges

Computational challenge w.r.t 
gene expression signals

Deconvoluting mixed signals in 
spots

Spatial resolution

Microdissection

~3-20 Cells

~1-3 Cell

sub cellular

Single Molecule

Example Technologies

TIVA, Geo-seq, etc

ST, Visium, etc

Curio seeker, VisiumHD, etc

VisiumHD, openST, stereo-seq

Xenium, MERSCOPE, molecular 
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Resolution of spatial transcriptomics and challenges

Computational challenge w.r.t 
gene expression signals

Aggregating signals into cells

Spatial resolution

Microdissection

~3-20 Cells

~1-3 Cell

sub cellular

Single Molecule

Example Technologies

TIVA, Geo-seq, etc

ST, Visium, etc

Curio seeker, VisiumHD, etc

VisiumHD, openST, stereo-seq

Xenium, MERSCOPE, molecular 
cartography, STARmap, etc
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Imaging-based spatial transcriptomics

• Cells in tissue
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Imaging-based spatial transcriptomics

• Cells in tissue

• Transcripts locations

• Image transcript locations

• Report transcript locations

• Identify cells (segmentation)

• Analyse cells



Evaluation - spot the difference!



Evaluation – cell proportions

29

Highly dense grey cells are hard to separate

Green, blue, orange, yellow cells all +/- 1



Evaluation – cell size

30

Highly dense grey cells are too large

yellow 
cells are 
split or 
missed



Evaluation – cell type annotation

31



Cell segmentation algorithms

Mainly demonstrated on segmenting DAPI (a nucleus stain)

Watershed is considered a reference algorithm, but there are many others…

Benchmark: Wang et al (2024) Briefings in Bioinformatics, https://doi.org/10.1093/bib/bbae407

32
[1] Wang et al (2024) Briefings in Bioinformatics

https://doi.org/10.1093/bib/bbae407


Cell segmentation by staining cell landmarks

33
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https://fq-segmentation.readthedocs.io/



Cell segmentation is typically DAPI (nucleus) + expansion

Sweeping assumptions:

• nucleus at the centre of the cell

• cell shapes are roundish (or square-ish when they are close to others)

• cells are all the same size (unless they are close to others)

• Users want to optimise % of transcript in cells

Incorrect segmentation leads to incorrect assignment of transcripts

34
[1] Salas et al (2023) biorXiv



Improving cell segmentation - staining multiple cell landmarks

Vendors now offer staining of multiple cell landmarks for “multi-modal” cell segmentation

(… looks beautiful compared to just DAPI)

35
[1] https://pages.10xgenomics.com/rs/446-PBO-704/images/AGBT_2024_Cell_Segmentation_Poster.pdf



Emerging post-segmentation quality control: spatial doublets

Missegmentation incorrectly assign transcripts from 
adjacent cells

• Referred to as “spatial doublets”

• … we are trying to call these “x-y spatial doublets”…

36
Mitchel et al (2025) bioRxiv



Overlapping cells in tissue sections (… spatial doublets)

Even though tissues sections are verrry thin, they 
are still 3D

• “Z-type spatial doublets”

• How many cells do you expect to overlap?

BONUS PRESENTATION!

• Check out slides 82 onwards 

37
Tiesmeyer et al (2025) bioRxiv

 y→
→

z
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Complex shapes Overlapping cells

[1] Lu et al (2017) IEEE Trans Med Imaging. [2] Molnar et al (2016) Scientific Reports

[3] Codeluppi et al (2019) Nature Methods. [4] Shutterstock.com 161560277

Cell segmentation isn’t always easy

easy hard

Cell stains might have 
issues

Cells might not be 
stained correctly (e.g. 

red blood cells)



mRNA molecule organisation patterns are not random

39
Codeluppi, Borm et al (2018) Nature Methods



mRNA molecule organisation patterns are not random

40
Codeluppi, Borm et al (2018) Nature Methods



Modelling mRNA distribution

Spatial model – how are mRNA molecules organised when they come from the same cell?

• Graph-based models

41
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Modelling mRNA distribution

Spatial model – how are mRNA molecules organised when they come from the same cell?

• Graph-based models

• Density-based models

Cell type model – how is spatial gene expression associated to different cell types?

• Prior cell type specific expression signatures e.g. from single cell RNA sequencing data

43



Cell-segmentation free analysis is still segmentation…

Image

(imagine people = cells)

44

Instance segmentation

Traditional cell 
segmentation

+

Graph-based methods

Semantic segmentation

Transcript density-
based methods

https://huggingface.co/blog/mask2former



Cell segmentation free analysis tools (… there many more!)
• Graph-based models (is transcript aggregation/clustering different from cell-segmentation?)

• spage2vec (Partel and Wählby, FEBS J, 2020)

• Baysor (Petukhov et al, Nat Biotechnol, 2021) 

• Points2Regions (Andersson et al, Cytometry A, 2024)

• Density-based models

• SSAM (Park et al, Nat Commun, 2021) *

• SSAM-lite (Tiesmeyer et al, Front Genet, 2022) *

• FICTURE (Si et al, Nat Methods, 2024)

• TopACT (Benjamin et al, Nature 2024)

• SAINSC (Mueller-Boetticher et al, Small Methods, 2024) *

• Augmented Cell Segmentation methods (using scRNA-seq data to improve segmentation)

• Baysor – can work with a DAPI prior

• pciSeq (Qian et al, Nat Methods, 2019) – Poisson point process + negative binomial

• JSTA (Littmann et al, MSB, 2021) – joint segmentation and typing applying ML on top of Watershed segmentation

• Segger (unpublished) – GNN that utilises nucleus segmentation and transcript graphs
45



Cell segmentation free analysis – pro’s and cons

Pros:

• Generally require less computational resources

• Not limited to stains (e.g. red blood cells have no nucleus, so DAPI isn’t useful)

• Analysis of measured transcripts

Cons:

• Cannot identify cells without transcripts (e.g. if a cell-type marker didn’t work)

• Conceptual interpretation of results - where are my cells?

• Limited downstream analysis options

46



Modelling transcript density using 
SSAM and Sainsc
Park, Jeongbin et al. “Cell segmentation-free inference of cell types from in situ transcriptomics data.” 
Nature communications vol. 12,1 3545. 10 Jun. 2021, doi:10.1038/s41467-021-23807-4

Müller-Bötticher, Niklas et al. “Sainsc: A Computational Tool for Segmentation-Free Analysis of In Situ 
Capture Data.” Small methods, e2401123. 12 Nov. 2024, doi:10.1002/smtd.202401123
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Transcript density indicate likely cell locations

48
Codeluppi, Borm et al (2018) Nature Methods



Transcript density indicate likely cell locations

49
Codeluppi, Borm et al (2018) Nature Methods



SSAM: cell segmentation free analysis of spatial data

Analyse spatial gene expression density, not cells

Park et al (2022) Nature Communication



The SSAM algorithm in 3 steps

1) Smooth gene expression

2) Provide/identify cell type signatures

3) Generate the cell-type map (sematic segmentation)

51



Step 1.1: calculate spatial mRNA density

Apply Kernel Density Estimation (KDE) with Gaussian kernel

Resulting image represents the probability density of mRNA existence

• From discrete molecules to cloud of gene expression (“gene expression per pixel”)

Bandwidth (sigma) should smooth between mRNA, but not outside of cells

52



Step 1.2: creating the “vector field” of gene expression

Stacking the KDE of each profiled gene 
creates the gene expression “vector field”

Each pixel in the vector field can be thought 
to have its own expression profile

53



Step 1.3: define gene expression threshold

If total gene expression density is too low then the signal likely originates from outside the cell

• Filtering low gene expression regions prevents classification of “low-quality” areas

54



Step 2.1: identify cell-type signatures

For many cell types, cell-type signatures are known: e.g. single-cell RNA sequencing

If cell-type signatures are not known then they need to be computed from the data

Selecting local maxima of mRNA signal as representatives of “cells”

55

mRNA 

locations

B A

C

KDE

A

B

C

Vector field Identify L1 local maxima

as a “proxy” for a cell

local maxima

Tiesmeyer et al (2024) Front. Genet.



Step 2.2: identify cell-type signatures – cluster local maxima

Cluster gene expression profiles of scRNAseq data or local L1 maxima

Different cluster = different cell type = different function!

SSAM adopts a Louvain algorithm clustering approach

• This can be exchanged with your favourite clustering method!

Median cluster expression = cell-type gene expression signature

Visualise using UMAP

56
Park et al (2022) Nature Communication



Step 3: generate the cell type map

57



Step 3: generate the cell type map

58



Step 3: generate the cell type map

59



Step 3: generate the cell type map

Classifying pixels

Pixels are classified based on a Pearson correlation

• Pixel gene expression VS cell-type gene expression signature

• Simple but effective

• Works well when genes are robust cell type markers (i.e. low plex cell typing panels)

• Doesn’t work well when genes are not cell type specific (i.e. high plex gene panels)

• This step can be exchanged with your favourite ML classification method!

60



How does SSAM perform?
Adult mouse brain somatosensory cortex (SSp)
osmFISH, 35 genes
Codeluppi, Borm et al (2018), Nature Methods
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SSAM identifies cell types accurately

De novo cell-type 
signatures

Clustering Signature 
comparison

62
Park et al (2022) Nature Communication



SSAM reconstructs the mouse SSp cell-type map

63
Park et al (2022) Nature Communication

SSAM reconstructs mouse brain somatosensory cortex



SSAM: how well does it work?

Park et al (2022) Nature Communication

VentricleVentricle

SSAM reconstructs mouse brain somatosensory cortex



SSAM improves mapping of the ventricle region

Problem: low DAPI/Poly-A signal and occlusion

Cell/Nucleus 
markers

Cell type
markers

Cell types
(all)

Cell types
(ventricle)

65
Park et al (2022) Nature Communication



SSAM improves mapping of the ventricle region

Problem: low DAPI/Poly-A signal and occlusion, but high marker gene expression

Cell/Nucleus 
markers

Cell type
markers

Cell types
(all)

Cell types
(ventricle)
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SSAM improves mapping of the ventricle region

Problem: low DAPI/Poly-A signal and occlusion

Cell/Nucleus 
markers

Cell type
markers

Cell types
(all)

Cell types
(ventricle)
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Emerging state of the art for spatial transcriptomics

Size and resolution Pseudo 3D

➔

Real 3D

Multi-omics

Liu, Yang, Deng et al. Cell 183, 1665-1681 (2020); Chen et al, Cell 185, 1777-1792 (2022); Fang et al, eLife12:RP90029 (2023); 

Yao, van Velthoven, Kunst et al. Nature 624, 317–332 (2023); Mueller-Boetticher et al. bioRxiv (2024) 



Sainsc: optimising SSAM for millions of cells & organism-scale

Segmentation-free Analysis of IN Situ Capture data

• Segmentation-free identifies red blood cells in the 
spleen and umbilical cord

Optimisation for organism scale analysis

• 10,000 times faster than SSAM

• 100 times less memory usage than SSAM

Suitable for imaging and sequencing-based spatial 
transcriptomics

• E.g. Stereo-seq, Open-ST, Nova-ST, VisiumHD

Segmentation (original) Sainsc

Mueller-Boetticher et al (2024) Small Methods
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But what can you do without cells?

71



Downstream analysis – spatial domains

72



SSAM identified mouse SSp cortical layers

SSAM Cell type map SSAM Domain map Original

73



CellSonar: modelling of spatial relationships between cell types 

● Statistical modelling of spatial relationships in the pancreas

74
Tosti et al (2021) Gastroenterology

Pancreatic islet
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Tosti et al (2021) Gastroenterology

Pancreatic islet



CellSonar: modelling of spatial relationships between cell types 

● Statistical modelling of spatial relationships in the pancreas

76
Tosti et al (2021) Gastroenterology

co-occurrence

of islets



CellSonar: modelling of spatial relationships between cell types 

● Statistical modelling of spatial relationships in the pancreas

77
Tosti et al (2021) Gastroenterology

co-occurrence

of islets



CellSonar: generative capabilities (click play!)



CellSonar: generative capabilities (click play!)



Summary

Spatial transcriptomics goes beyond single cells

• Early (bad) cell segmentation can lead to inaccuracies and missing important signal

• Cell-segmentation free approaches are powerful parallel analysis avenues

Proposed workflow

80

Identify problem 
regions (overl.py)

Segmentation-free (e.g. Sainsc)

Cell 
segmentation

Downstream 
analysis

Post segmentation 
quality control

Cell 
typing



Tutorial

1. Learn to use the Sainsc tool

2. Analyse a Xenium dataset of a mouse brain coronal section

3. Identify cell type gene expression patterns

4. Define minimal gene expression thresholds

5. Create a cell-type map

81
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Bonus material!

ovrl.py – a tool to identify overlapping cells in imaging-
based spatial transcriptomics data

83



Pre-processing and quality control

We go too quickly into downstream analysis (e.g. annotation, spatial relationships)

A lack of early pre-processing and quality guidelines of imaging based spatial transcriptomics

An thus far ignored aspect of spatial transcriptomics: overlapping cells

84



Overlapping cells affects various cell types in practice

85

Lu et al, 2017. IEEE Trans Med Imaging 



Imaging-based spatial transcriptomics is 3-D

… but how 3-D is it?

A typical section would be up to 1 cm x 1 cm x 10 µm (x, y, z)

• 10,000 x 10,000 x 10 µm (x, y, z)

86

 y→
→

z

Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv
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Overl.py – a python tool for identifying cell overlaps

88

A light-weight python tool to identify regions with 3D overlapping cells

Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Overl.py – a python tool for identifying cell overlaps

89

A light-weight python tool to identify regions with 3D overlapping cells

Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Overl.py – a python tool for identifying cell overlaps

90

A light-weight python tool to identify regions with 3D overlapping cells

Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Overl.py – a python tool for identifying cell overlaps

91

A light-weight python tool to identify regions with 3D overlapping cells

Compare top 
and bottom

Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Overl.py – a python tool for identifying cell overlaps

92

A light-weight python tool to identify regions with 3D overlapping cells

Compare top 
and bottom

Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Overl.py visualisation of a region of interest (ROI) in mouse brain

93

UMAP

Cell-type map Overl.py map

ROI: Overl.py map

ROI: 3D ROI: top view ROI: bottom view

ROI: side view, y

ROI: side view, x
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Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Example: 3-way cell overlap!

Microglial cell (blue) and astrocytes (khaki) cell on top of an inhibitory neuron (orange)

94

ROI: top view ROI: bottom view

ROI: side view, y

ROI: side view, x

Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Example: 3-way cell overlap!

Microglial cell (blue) and astrocytes (khaki) cell on top of an inhibitory neuron (orange)

95

ROI: top view ROI: bottom view

ROI: side view, y

ROI: side view, x

Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Low overlap

High overlap

Overl.py detects folds in the tissue sample
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Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Overl.py detects folds in the tissue sample

97

Low overlap

High overlap
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Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv



Removing overlapping cells improves cell-type clustering

98 Marco-Salas et al (2023), Nature Methods (accepted)

Tiesmeyer et al (2025) bioRxiv
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