
Marco Varrone
Postdoc and BRIDGE Fellow
CSO Lab, UNIL, Lausanne

Spatial domains
Tissue architecture and remodeling
from spatial omics data

PI: Prof. Giovanni Ciriello



Outline
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Spatial domain identification 
approaches
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Cell type proportions, Hidden Markov Random Fields and 
Graph Neural Networks
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Goltsev et al. "Deep profiling of mouse splenic architecture with CODEX multiplexed imaging." Cell (2018).

Schürch et al. "Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front." Cell (2020).
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20% 30% 50%

Steps

1. Compute neighbors 

proportion
for every cell

2. Cluster cells
based on their proportions

• Scalable

• Depends on manual annotations

- How detailed should the annotation be?

- How to capture variability within cell 

types?

Goltsev et al. "Deep profiling of mouse splenic architecture with CODEX multiplexed imaging." Cell (2018).

Schürch et al. "Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front." Cell (2020).
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Zhao et al. "Spatial transcriptomics at subspot resolution with BayesSpace." Nature Biotechnology (2021).

Liu et al. "Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data." Nucleic acids research (2022).

Liu et al. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST." Nature Communications (2023).
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• Medium scalability

• No annotation required
Works directly on gene expression

Sequences → 1D graphs Arbitrary graphs

Zhao et al. "Spatial transcriptomics at subspot resolution with BayesSpace." Nature Biotechnology (2021).

Liu et al. "Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data." Nucleic acids research (2022).
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Hu et al. "SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network." Nature 
methods (2021).
Dong & Zhang. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder." Nature communications (2022).
Long et al. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST." Nature Communications (2023).
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• Low/medium scalability

• No annotation required
Works directly on gene expression

Hu et al. "SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network." Nature 
methods (2021).
Dong & Zhang. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder." Nature communications (2022).
Long et al. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics with GraphST." Nature Communications (2023).
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Reminder: cluster cells based on the gene/protein expression of the cell itself and its neighbors

cellA

“spatial” features
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Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)
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Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)
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Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)
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Scalable

+8M cells in 14 mins

No annotation required

Works directly on gene expression

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)
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CellCharter

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)
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CellCharter

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)
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For each spatial domain

1. Split it into different components

2. Automatically draw the boundary
around each components
- Using alpha shapes

3. Compute shapes metrics for each 
component



71

Spatial proteomics with 30 markers applied to 9 samples of mouse spleen in 2 conditions:

● 3 Normal (BALBc)

● 6 Sytemic lupus (MRL): autoimmune disease

BALBc-1 MRL-4 (early) MRL-8 (intermediate)      MRL-9 (late)      

Domain shape changes in mouse lupus

Goltsev et al., 2018
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Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)

From normal to lupus

● No new spatial domain

Domain shape changes in mouse lupus
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Domain shape changes in mouse lupus

From normal to lupus

● No new spatial domain

● C2 - GC-PALS expands and infiltrates C3 - germinal center

● C3 - germinal center acquires a more irregular shape

● C2 - GC-PALS and C4 - marginal zone lose their linear/circular

shape 75

1 2

3 4

BALBc-1 MRL-4 (early) MRL-8 (intermediate)      MRL-9 (late)      



Shape analysis
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● C3 - germinal center acquires a more irregular shape

● C2 - GC-PALS and C4 - marginal zone lose their linear/curved shape



How to find the “best” 
number of clusters?

There may not be a “best” one
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Finding K

● There may not be an unequivocally best number of clusters K

● Tissues and samples are often organized into hierarchies

● All levels may be valid clusterings
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Cancer

Individual tumors

Tumor subpopulations

Tumor cells

Find one or more good candidates within a range (Kmin, Kmax)
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Tumor subpopulations
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Cancer

Individual tumors

Tumor 
subpopulations

Tumor cells

Patient 1 Patient 2

Find one or more good candidates within a range (Kmin, Kmax)
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Find one or more good candidates within a range (Kmin, Kmax)
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Spatial cell niches in
Non-Small Cell Lung Cancer

Using CellCharter to decipher intra-tumor heterogeneity
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Spatial domains in Non-Small Cell Lung Cancer
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750,000 cells / 960 genes

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)

He et al., 2021

Lung cancer

n = 5 patients

n = 8 regions



Spatial domains in Non-Small Cell Lung Cancer
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750,000 cells / 960 genes All tumor cells in same cluster

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)

He et al., 2021

Lung cancer

n = 5 patients

n = 8 regions



Spatial domains in Non-Small Cell Lung Cancer
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750,000 cells / 960 genes

Each patient’s tumor → separate 
cluster

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)

He et al., 2021

Lung cancer

n = 5 patients

n = 8 regions



Spatial domains in Non-Small Cell Lung Cancer
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750,000 cells / 960 genes

Within each patient: tumor cell states → separate 
clusters

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)

He et al., 2021

Lung cancer

n = 5 patients

n = 8 regions
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He et al., 2021

750,000 cells / 960 genes

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)

Lung cancer

n = 5 patients

n = 8 regions



Two tumor subpopulations with distinct 
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Lung 9 - Replicate 1

Tumor cells Tumor cells

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)



Two tumor subpopulations with distinct 
microenvironments

105

Cell proliferation

Response to hypoxia

Lung 9 - Replicate 1

Tumor cells Tumor cells

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)



Two tumor subpopulations with distinct 
microenvironments
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Cell proliferation

Response to hypoxia

Lung 9 - Replicate 1

Proliferative tumor cells

Tumor cells + CD4 memory T cells

Tumor cells Tumor cells

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)



Tumor cells

Two tumor subpopulations with distinct 
microenvironments
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Tumor cells

Cell proliferation

Response to hypoxia

Lung 9 - Replicate 1
Tumor cells + CD4 memory T cells

Neutrophils + NK cells

Hypoxic tumor cells

Proliferative tumor cells

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)



Tumor cells

Two tumor subpopulations with distinct 
microenvironments
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Tumor cells

Cell proliferation

Response to hypoxia

Lung 9 - Replicate 1

Proliferative tumor cells

Tumor cells + CD4 memory T cells

Neutrophils + NK cells

Hypoxic tumor cells

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)



Neutrophil-hypoxia confirmed in multiple 

datasets
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MERFISH dataset - Human Lung Cancer Patient 1 - ~350,000 cells 416 lung cancers - Imaging Mass Cytometry (IMC) - 35 protein markers

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)
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Tumor hypoxic state

Tumor proliferative state

Neutrophil + NK cells 

tumor microenvironment

CD4 memory T cells 

tumor microenvironment

Heterogeneous

tumor cells

Heterogeneous 

tumor microenvironment



Intra-tumor heterogeneity in NSCLC
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Tumor hypoxic state

Tumor proliferative state

Neutrophil + NK cells 

tumor microenvironment
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Intra-tumor heterogeneity in NSCLC
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Tumor hypoxic state

Tumor proliferative state

Neutrophil + NK cells 

tumor microenvironment

CD4 memory T cells 

tumor microenvironment

Heterogeneous

tumor cells

Heterogeneous 

tumor 

microenvironment
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● 3 most common spatial domain approaches

● Cell type proportion in neighborhood

● Hidden Markov Random Field

● Graph Neural Networks

● CellCharter

● Find best number of domains

● Shape analysis

● Spatial domains characterize tissue architecture
Disease → tissue architecture remodeling
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