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Outline

 What is a spatial domain?
o Types of spatial domain methods

e CellCharter

o Downstream analysis: domain shape

o Find the best number of domains

o Applications to:

o Autoimmune diseases

o Lung cancer



What is a spatial domain?
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scRNA-seq Spatial transcriptomics
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Spatial clustering principles

Cluster cells based on the gene expression of:
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Spatial domain identification
approaches

Cell type proportions, Hidden Markov Random Fields and
Graph Neural Networks



Approach 1: proportion of cell types

Goltsev et al. "Deep profiling of mouse splenic architecture with CODEX multiplexed imaging." Ce//(2018).
Schiirch et al. "Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front." Ce//(2020).
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Approach 1: proportion of cell types

Steps

1. Compute neighbors
proportion
for every cell

2. Cluster cells
based on their proportions

0% 3% [ 50k
® 9 L

Goltsev et al. "Deep profiling of mouse splenic architecture with CODEX multiplexed imaging." Ce//(2018).
Schiirch et al. "Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front." Ce//(2020).
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Approach 1: proportion of cell types

Steps
1. Compute neighbors » Scalable
proportion
for every cell » Depends on manual annotations

= How detailed should the annotation be?
- How to capture variability within cell
types?

2. Cluster cells
based on their proportions

0% 3% [ 50k
® 9 L

Goltsev et al. "Deep profiling of mouse splenic architecture with CODEX multiplexed imaging." Ce//(2018). 17
Schiirch et al. "Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front." Ce//(2020).




Approach 1: proportion of cell types
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Approach 2: Hidden Markov Random Fields

Hidden Markov Model
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Hidden Markov Model
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Approach 2: Hidden Markov Random Fields

Hidden Markov Model Hidden Markov Random Field
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Zhao et al. "Spatial transcriptomics at subspot resolution with BayesSpace." Nature Biotechnology (2021).
Liu et al. "Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data." Mucleic acids research (2022).

Liu et al. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST." Nature Communications (2023).
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Approach 2: Hidden Markov Random Fields

Hidden Markov Model Hidden Markov Random Field

Gene expression
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Zhao et al. "Spatial transcriptomics at subspot resolution with BayesSpace." Nature Biotechnology (2021).
Liu et al. "Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data." Mucleic acids research (2022).
Liu et al. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST." Nature Communications (2023).
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Approach 2: Hidden Markov Random Fields

Hidden Markov Model Hidden Markov Random Field

Gene expression

« Medium scalability

« No annotation required
Works directly on gene expression
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Zhao et al. "Spatial transcriptomics at subspot resolution with BayesSpace." Nature Biotechnology (2021).
Liu et al. "Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data." Mucleic acids research (2022).
Liu et al. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST." Nature Communications (2023). 25



Approach 2: Hidden Markov Random Fields

® Melanoma
® Stroma
Lymphoid tissue

Zhao et al. "Spatial transcriptomics at subspot resolution with BayesSpace." Nature Biotechnology (2021).
Liu et al. "Joint dimension reduction and clustering analysis of single-cell RNA-seq and spatial transcriptomics data." Mucleic acids research (2022). 26
Liu et al. "Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST." Nature Communications (2023).



Approach 3: Graph Neural Networks

Nodes with similar neighborhoods have similar representations (i.e. vectors)

Hu et al. "SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network." Nature
methods (2021). 7
Dong & Zhang. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder." Nature communications (2022). 2
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Nodes with similar neighborhoods have similar representations (i.e. vectors)
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‘ ‘ Different cell types > very different gene
expression

‘ @ Varlablllty within cell type - slightly different gene
expression

Hu et al. "SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network." Nature

methods (2021).
Dong & Zhang. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder." Nature communications (2022).

Long et al. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics withGraphST." Nature Communications (2023).
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Approach 3: Graph Neural Networks

Nodes with similar neighborhoods have similar representations (i.e. vectors)
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Hu et al. "SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network." Nature
methods (2021).

Dong & Zhang. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder." Nature communications (2022).
Long et al. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics withGraphST." Nature Communications (2023).
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Approach 3: Graph Neural Networks

Nodes with similar neighborhoods have similar representations (i.e. vectors)
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Works directly on gene expression
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Hu et al. "SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network." Nature
methods (2021).

Dong & Zhang. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder." Nature communications (2022). 30
Long et al. "Spatially informed clustering, integration, and deconvolution of spatial transcriptomics withGraphST." Nature Communications (2023).



Approach 3: Graph Neural Networks
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Hu et al. "SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network." Nature
methods (2021).

Dong & Zhang. "Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder." Nature communications (2022). 31




Our approach: neighborhood aggregation

My PhD plan (2020) - Spatial domain identification with Graph Neural Networks

« Start with a simple baseline:

- Acquire familiarity with the problem
- Gradual increase of complexity in development
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My PhD plan (2020) - Spatial domain identification with Graph Neural Networks

» Start with a simple baseline:
- Acquire familiarity with the problem
- Gradual increase of complexity in development

Reminder: cluster cells based on the gene/protein expression of the cell itself and its neighbors
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Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)
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My PhD plan (2020) - Spatial domain identification with Graph Neural Networks

« Start with a simple baseline:
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Our approach: neighborhood aggregation

My PhD plan (2020) - Spatial domain identification with Graph Neural Networks

» Start with a simple baseline:
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My PhD plan (2020) - Spatial domain identification with Graph Neural Networks
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Our approach: neighborhood aggregation

My PhD plan (2020) - Spatial domain identification with Graph Neural Networks

» Start with a simple baseline:
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- Gradual increase of complexity in development
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My PhD plan (2020) - Spatial domain identification with Graph Neural Networks
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- Gradual increase of complexity in development
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Our approach: neighborhood aggregation

My PhD plan (2020) - Spatial domain identification with Graph Neural Networks

« Start with a simple baseline:

- Acquire familiarity with the problem
- Gradual increase of complexity in development

Reminder: cluster cells based on the gene/protein expression of the cell itself and its neighbors
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First results on spatial proteomics mouse
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First results on spatial proteomics mouse

r

Continue to explore neighborhood aggregation
or
Move to develop a Graph Neural Network method?
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Our approach: neighborhood aggregation
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Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)




Our approach: neighborhood aggregation
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Our approach: neighborhood aggregation
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Our approach: neighborhood aggregation
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CellCharter
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Domain shape analysis




Shape measures
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Shape measures

For each spatial domain

1. Split it into different components
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Shape measures

For each spatial domain

1. Split it into different components

2. Automatically draw the boundary

around each components
- Using alpha shapes
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Shape measures

For each spatial domain
1. Split it into different components

2. Automatically draw the boundary

around each components
- Using alpha shapes

3. Compute shapes metrics for each
component
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Domain shape changes in mouse lupus

Spatial proteomics with 30 markers applied to 9 samples of mouse spleen in 2 conditions:

e 3 Normal (BALBc)
e 6 Sytemic lupus (MRL): autoimmune disease Goltsev et al., 2018

MRL-4 (early) MRL-8 (intermediate) MRL-9 (late)
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Domain shape changes in mouse lupus
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Domain shape changes in mouse lupus
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Domain shape changes in mouse lupus
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Domain shape changes in mouse lupus
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Shape analysis

_ y spleen
C2- GC-PALS boundary ~ C3- germinal center S
p=9.8E-5 i
1+ SRR
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D _ .
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« (C3 - germinal center acquires a more irregular shape

« C2- GC-PALS and C4 - marginal zone lose their linear/curved shape
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How to find the “best”
number of clusters?

There may not be a “best” one



Finding K

There may not be an unequivocally best number of clusters K

Tissues and samples are often organized into hierarchies

Cancer

v
Individual tumors

A 4
Tumor subpopulations

All levels may be valid clusterings Tumor cells

Find one or more good candidates within a range (K.ins Kmax)
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Finding K

There may not be an unequivocally best number of clusters K

Tissues and samples are often organized into hierarchies

Cancer

v
Individual tumors

A 4
Tumor subpopulations

All levels may be valid clusterings Tumor cells

Find one or more good candidates within a range (K.ins Kmax)
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Finding K

e There may not be an unequivocally best number of clusters K
Patient 1 Patient 2

/

e Tissues and samples are often organized into hierarchies

Cancer

A\ 4
Individual tumors

A 4
Tumor subpopulations

e All levels may be valid clusterings Tumor cells

Find one or more good candidates within a range (K.ins Kmax)



Finding K

e There may not be an unequivocally best number of clusters K

e Tissues and samples are often organized into hierarchies

Cancer

v

Individual tumors

Tumor

____subpopulations |

e All levels may be valid clusterings

Patient 1 Patient 2

\

Tumor cells

Find one or more good candidates within a range (K.ins Kmax)
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K

K=5 K=6
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K

2 3 4 5
number of clusters
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K

() @
Run 1 o:§.0 .‘.:: 4 1] o’o::
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K
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Cluster stability

Find one or more good candidates within a range (K, Kmax)

. <
Best K = highest stability when changing K
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Cluster stability
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Cluster stability
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Cluster stability
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Spatial cell niches in
Non-Small Cell Lung Cancer

Using CellCharter to decipher intra-tumor heterogeneity



Spatial domains in Non-Small Cell Lung Cancer

He etal., 2021

Lung cancer
g& n = 5 patients
n = 8 regions

Spatial transcriptomics
(Manostring CosMx)

750,000 cells / 960 genes

Cluster Stability
(Fowlkes-Mallows score)

07~ Stable cluster solutions

Varrone, et al. "CellCharter reveals spatial cell niches associated with tissue remodeling and cell plasticity." Nature Genetics (2024)
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Spatial domains in Non-Small Cell Lung Cancer

He etal., 2021
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Spatial domains in Non-Small Cell Lung Cancer

He etal., 2021

Cluster proportions
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Spatial domains in Non-Small Cell Lung Cancer

He etal., 2021

Cluster proportions
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Spatial domains in

He etal., 2021
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Two tumor subpopulations with distinct
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Two tumor subpopulations with distinct

microenvironments
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Two tumor subpopulations with distinct

microenvironments
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Two tumor subpopulations with distinct
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Neutrophil-hypoxia confirmed in multiple
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Intra-tumor heterogeneity in NSCLC

. Neutrophil + NK cells
tumor microenvironment

Tumor hypoxic state
Tumor proliferative state .
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tumor cells tumor microenvironment
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Intra-tumor heterogeneity in NSCLC
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Intra-tumor heterogeneity in NSCLC
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Conclusions

e 3 most common spatial domain approaches

o Cell type proportion in neighborhood
o Hidden Markov Random Field
o Graph Neural Networks

e CellCharter

e Find best number of domains

o Shape analysis

« Spatial domains characterize tissue architecture
Disease > tissue architecture remodeling
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