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From bulk to single-cell RNA-seq to imaging- &  
sequencing-based spatially resolved transcriptomics

tissue

imaging-based

• molecule-level data
• targeted panel (100s-1000s of 

features)
• single-cell resolution requires 

segmentation

sequencing-based

• spot-level data
• whole transcriptome (10,000s of features)
• single-cell resolutions requires 

aggregation or deconvolution

single-cell

spatial 

bulk Slide from 
Helena Crowell



Main concept: different data representations

Samuel

Martin
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What (statistical) analyses are done on spatial omics datasets?

• Deconvolution 
• Finding spatially-variable “features” 
• Point patterns 
• Lattice data 
• Cell-cell communication (simple) —> co-localization
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Tobler’s “first law of geography”: everything is 
related to everything else, but near things are 
more related than distant things.
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Finding spatially-variable genes: SpatialDE

– SpatialDE: response = normal 
distribution with covariance 
with two components: i) 
based on distance b/w points 
- exponential decay; ii) 
constant non-spatial variance 

– Null model: fit just the non-
spatial variance (i.e., without 
sigma) 

– Fit 2 models, likelihood ratio 
test
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Spatially variable genes
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• different types (senses?) 
of spatially variable 
genes



Statistical Bioinformatics // Department of Molecular Life Sciences

Spatially variable genes
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• different types of spatially 
variable genes
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Spatially variable versus highly variable
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Biological variability (More mathematical details on 
Moran’s I below)



Alternatively, spatially variable features = 
DE between domains

Peiying Cai

Simone 
Tiberi

To find spatially variable genes 
(SVGs); spatial clustering + 
classical statistical method works 
quite well
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Fundamentals of Spatial Statistics (the subset that is useful for spatial omics 
data)

–Point patterns  
– Definitions: intensity, homogeneity, dependence 
– Multi-type point patterns 
– Marked point processes 
– Statistical summaries 

–Lattice data 
– Definitions: lattice, regularity, neighbourhood matrix 
– Univariate global spatial autocorrelation 
– Univariate local spatial autocorrelation 
– Multivariate options
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What are point patterns?
• data with spatial locations of objects (cells .. maybe 

transcripts) are generated by a stochastic process 
• lattice data is not a point pattern! 
• point pattern analysis gives tools for both discrete (cell types) 

and continuous  (gene expression) “marks” 
• We mostly focus here on discrete categories, i.e., patterns 

within and between cell types
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– “a realisation of a spatial point process effectively assumes that the locations of points are not fixed, and that 
the point pattern is the response or observation of interest.”



Statistical Bioinformatics // Department of Molecular Life Sciences

Some definitions
– notation: X is the point process; x is the (observed) point pattern 
– lambda: intensity function
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Definitions
– X is the point process; x is the (observed) point pattern 
– lambda: intensity function 
– Complete spatial randomness (CSR) has two properties: 

– More specifically:
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Couple more definitions
– Inhomogeneity
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Properties of point patterns

– Which of these is homogeneous? 
– Which of these is completely spatially random (CSR)? 
– Which of these is clustered? 
– Which of these is not independent?
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Extensions of point patterns

– (patterns can be regions/lines, not just points; can be in higher dimension (e.g., 3D); temporal 
component .. most of the methods I discuss have extensions; not discussed here) 

– marks —> marked point process 
– types —> multi-type point process (contrast with ‘multivariate’) 
– covariates
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Multi-type point patterns
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https://www.nature.com/articles/s41587-021-01006-2 
Subtlety here: multi-type point patterns versus multivariate point patterns

https://www.nature.com/articles/s41587-021-01006-2
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Correlation for point patterns

– Ripley’s K function 
– words definition: the empirical K-function K(r) is the cumulative 

average number of data points lying within a distance r of a 
typical data point
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regular                    independent             clustered
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Correlation for point patterns

– Ripley’s K function 
– mathematical definition:
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What about correlation and intensity together?

– inhomogeneous correlation functions 
– edge correction 

– n.b. confounding of correlation and intensity (next slide)
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Confounding between 
clustering and intensity

– Whether you assume homogeneity 
or not (in the K-function calculation) 
can have a big impact on the 
estimated curves 

– Are these cells clustered or have 
different intensity? Hard to tell.
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“Local” indicators of spatial association = LISA
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Functions/Curves —> Functional PCA
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Other senses of spatial 
heterogeneity (again, functions!)

Distribution of distance to the 5th nearest neighbour

Martin
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Extensions of the K function (1)

– multitype K-function Kij(r), also called the bivariate or cross-type K-function, is the 
expected number of points of type j lying within a distance r of a typical point 
of type i, standardised by dividing by the intensity of points of type j.
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Extensions of the K function (2)

– L and g functions
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Other point pattern summaries
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Fundamentals of Spatial Statistics (the subset that is useful for spatial omics 
data)

–Point patterns  
– Definitions: intensity, homogeneity, dependence 
– Multi-type point patterns 
– Marked point processes 
– Statistical summaries 

–Lattice data 
– Definitions: lattice, regularity, neighbourhood matrix 
– Univariate global spatial autocorrelation 
– Univariate local spatial autocorrelation 
– Multivariate options
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Lattice data analysis

- Lattice: spatial units D = {A1, A2,...,An} that are not overlapping 

- Lattice data: Random variable along the lattice Yi = Y(Ai) 

- Regularity: All spatial units have the same size, shape and observations are 
placed on a regular grid 

- Neighbourhood matrix: W = wij defines the spatial relationships 

Zuur et al. 2007
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Spatial autocorrelation: Global Moran’s I

– Global measure of auto-correlation (correlation to 
signal nearby in space); assume homogeneity! 

– Alternative: Geary’s C
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https://en.wikipedia.org/wiki/Moran%27s_I 
https://en.wikipedia.org/wiki/Geary%27s_C 

https://en.wikipedia.org/wiki/Moran's_I
https://en.wikipedia.org/wiki/Geary's_C
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Spatial autocorrelation: Local Moran’s I

– Local measure of auto-correlation (correlation to 
signal nearby in space)
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https://en.wikipedia.org/wiki/Moran%27s_I 
https://en.wikipedia.org/wiki/Geary%27s_C 

https://en.wikipedia.org/wiki/Moran's_I
https://en.wikipedia.org/wiki/Geary's_C
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Spatial autocorrelation measures: weights!
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Adjacent spots                   H&E neighbors                    k=5 NNs
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Cell-cell communication

– SpatialDM: Global Moran’s R, which is a bivariate version of Moran’s I
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Cell-cell communication

– SpatialDM: Global Moran’s R, which is a bivariate version of Moran’s I
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Example: Alpha and beta cells

• “feature of type 1 diabetes (T1D) is that the immune system destroys 
pancreatic β-cells but not neighbouring α-cells, even though both β-cells and 
α-cells are dysfunctional.”


• Calculated Gcross metric between alpha and beta cells


• if the alpha cells remain the same and beta cells get progressively 
destroyed, the distances should increase over the disease 
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spatialFDA Bioconductor package
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Other work in this space



Concluding remarks
• Most spatial data can be represented as lattice data; some 

data can be represented as point patterns 
• Point pattern analysis offers a few tools for exploring / inferring 

spatial heterogeneity —> represent summaries as functions 
and thus functional data analysis tools could also be useful 

• Multi-sample analysis: functional PCA, functional GAM 
modelling = flexible framework 

• Gotchas: confounding b/w intensity and correlation, weighting 
matrices
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