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Ascona, Switzerland

Leveraging Multi-Omics Data for
Modern Benchmarking: Advancing Computational Methods in Molecular Biology is an event dedicated to the Evaluation of Kinase Activity

bringing together researchers and students from bioinformatics, computational biology, molecular biology, Inference and Network
and related fields. This event aims to open a dynamic and widely-varying discussion of the various topics of Contextualisation
method evaluation (benchmarking) as a means to nudge the field towards higher standards and modern

i Benchmarking cell segmentation
open and community-based approaches.

methods for fluorescent images in
spatial omics

Benchmarking pretrained

Join us in Ascona to contribute to the advancement of computational methods in molecular biology and help
shape the future of this dynamic field.
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From bulk to single-cell RNA-seq to imaging- &

sequencing-based spatially resolved transcriptomics

<

imaging-based sequencing-based

Slide from
Helena Crowell

* molecule-level data

* spot-level data
* whole transcriptome (10,000s of features)
* single-cell resolutions requires

aggregation or deconvolution

: * targeted panel (100s-1000s of

spatial features)

* single-cell resolution requires
segmentation



Main concept: different data representations

TECHNOLOGY
Imaging-based HTS-based
- Targeted - Untargeted

- Lower resolution

- Higher resolution
- Area limited by slide

- Trade-off area / time
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. . Martin
| centroids / \cell outline |
point pattern irregular lattice  regular lattice

ANALYSIS

Point pattern analysis

Lattice data analysis

pasta: Pattern Analysis for Spatial Omics Data

! Martin Emons"!, Samuel Gunz'f, Helena L. Crowell?, Izaskun Mallona!, Reinhard Furrer®, and
Mark D. Robinson'*
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What (statistical) analyses are done on spatial omics datasets?

+ DPeconveluton

* Finding spatially-variable “features”

* Point patterns

* Lattice data

« Cell-cell communication (simple) —> co-localization

Tobler’s “first law of geography’: everything is
related to everything else, but near things are
more related than distant things.
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Finding spatially-variable genes: SpatialDE X(fl‘i‘i‘e‘fsfevgel‘gff“ Sarah A Teichmann

Spatial DE model. SpatialDE models gene expression profiles
y = (y1, ..., yn) for a given gene across spatial coordinates
X = (x1, ..., xy), using a multivariate normal model of the form

— SpatialDE: response = normal
distribution with covariance
with two components: i)
based on distance b/w points p 62.8.3)=N 162 (S+68-1 (1)
- exponential decay; i) (y|p,05,6,2X)=N(y|p-1,05 - (X+6-1))

constant non-spatial variance The fixed effect Ug1 accounts for the mean expression level, and

— Null model: fit just the non- > denotes a spatial covariance matrix defined on the basis of the
spatial variance (i.e., without input coordinates of pairs of cells. Spatial DE uses the so-called
sigma) squared exponential covariance function to define X:

_ Fit 2 models, likelihood ratio |x;—x; [
test 2ij = k(x,x;) = exp| - 2.12] (2)
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Article https://doi.org/10.1038/541467-023-397487

nnSVG for the scalable identification of
spatially variable genes using nearest-
neighbor Gaussian processes

Spatially variable genes

« different types (senses?)
of spatially variable
genes

—
Selected SVGs: human DLPFC

Received: 15 June 2022 Lukas M. Weber ®", Arkajyoti Saha?, Abhirup Datta®’, Kasper D. Hansen®' &
Stephanie C. Hicks®"

Accepted: 23 June 2023

MOBP
-4"9
HBB IGKC NPY
M 4 3
‘e , W
s‘-:r"". ‘et ; » N "’: e . ¥ <
e o ok ¥y
By o2 ' a e,
<N " '
T —

LIBD

" 4
-
0 tayert [ Levers [ Layers I wm
[ ayerz [ Layera [T Layers [ NA
T ———

counts
600



University of
Zurich™

Article
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nnSVG for the scalable identification of
spatially variable genes using nearest-

neighbor Gaussian processes
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Spatially variable genes
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Alternatively, spatially variable features =
DE between domains K
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Main concept: different data representations

TECHNOLOGY
Imaging-based HTS-based
- Targeted - Untargeted

- Lower resolution

- Higher resolution
- Area limited by slide

- Trade-off area / time
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Fundamentals of Spatial Statistics (the subset that is useful for spatial omics
data)

—Point patterns
— Definitions: intensity, homogeneity, dependence

— Multi-type point patterns .

ype p P Spatial Point Patterns
— Marked point processes Methodology and Applications with R
— Statistical summaries

—Lattice data
— Definitions: lattice, regularity, neighbourhood matrix
— Univariate global spatial autocorrelation
— Univariate local spatial autocorrelation
— Multivariate options

12



What are point patterns?

e data with spatial locations of objects (cells .. maybe
transcripts) are generated by a stochastic process

e |attice data Is not a point pattern!

e point pattern analysis gives tools for both discrete (cell types)
and continuous (gene expression) “marks”

¢ \We mostly focus here on discrete categories, i.e., patterns
within and between cell types
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— “arealisation of a spatial point process effectively assumes that the locations of points are not fixed, and that
the point pattern is the response or observation of interest.”

Scenario 14.1. A weather map for Europe displays a symbol for each major city indicating the
expected type of weather (e.g., sunny, cloudy, storms).

Scenario 14.2. An optical astronomy survey records the sky position and qualitative shape (ellipti-
cal, spiral, etc.) of each galaxy in a nearby region of space.

Scenario 14.3. Trees in an orchard are examined and their disease status (infected/not infected) is
recorded. We are interested in the spatial characteristics of the disease, such as contagion between
neighbouring trees.
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Some definitions

— notation: X is the point process; X is the (observed) point pattern

— lambda: intensity function

A point pattern is denoted by a bold lower case letter like x. It is a set

X = {x1,X2,...,Xn}

of points x; in two-dimensional space R?. The number n = n(x) of points in the pattern is not
fixed in advance, and may be any finite nonnegative number including zero. In practice, the data
points are obviously recorded in some order xi,...,x,; but this ordering is artificial, and we treat
the pattern x as an unordered set of points.

E[n(XNB)] = /B A () du

15
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Definitions

— Xis the point process; x is the (observed) point pattern
— lambda: intensity function
— Complete spatial randomness (CSR) has two properties:

homogeneity: the points have no preference for any spatial location;

independence: information about the outcome in one region of space has no influence on the out-
come in other regions.

— More specifically:

homogeneity: the number n(X N B) of random points falling in a test region B has mean value
En(XNB) =A|B|;

independence: for test regions By, By, ..., B, which do not overlap, the counts n(XNB}),...,n(XN
B,,) are independent random variables;

16
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Couple more definitions

Inhomogeneity

The inhomogeneous Poisson point process with intensity function A () is defined by the follow-
ing properties:

intensity function: the expected number of points falling in aregion B is the integral u = [ A (u) du
of the intensity function A () over the region B;

independence: if space is divided into non-overlapping regions, the random patterns inside these
regions are independent of each other;

Poisson-distributed counts: the random number of points falling in a given region has a Poisson
probability distribution;

17
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Properties of point patterns

Which of these is homogeneous?

Which of these is completely spatially random (CSR)?
Which of these is clustered?

Which of these is not independent?
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Extensions of point patterns

— (patterns can be regions/lines, not just points; can be in higher dimension (e.g., 3D); temporal
component .. most of the methods | discuss have extensions; not discussed here)

— marks —> marked point process
— types —> multi-type point process (contrast with ‘multivariate’)

— covariates
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Multi-type point patterns :CM

Caudal mesoderm

. Cranial mesoderm

( 7 © Definitive endoderm

. Dermomyotome
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. Forebrain/midbrain/hindbrain
. Gut tube
Hematoendothelial progenitors
. Intermediate mesoderm
. Lateral plate mesoderm
. Mixed mesenchymal mesoderm
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1st Edition

Spatial Point Patterns Surface ectoderm

Methodology and Applications with R

By Adrian Baddeley, Ege Rubak, Rolf Turner

Copyright 2016
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Subtlety here: multi-type point patterns versus multivariate point patterns
20
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Correlation for point patterns

— Ripley’s K function

— words definition: the empirical K-function K(r) is the cumulative
average number of data points lying within a distance r of a

typical data point
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Correlation for point patterns

— Ripley’s K function 1 . . .
K(r)= T E [number of r-neighbours of u | X has a point at location u]

— mathematical definition:

n(x)
t(u,r,x) =) 1{0< |lu—xj| <r}
j=1

Definition 7.1. If X is a stationary point process, with intensity A > 0, then for any r > 0
1
K(r) = TE [t(u,r,X) | u € X] (7.6)

does not depend on the location u, and is called the K-function of X.

22
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What about correlation and intensity together?

— inhomogeneous correlation functions

— edge correction

Yy 1k —xjll <7}

I?inhom(r) —
IWI FiE Ax)A(x))

— n.b. confounding of correlation and intensity (next slide)

e(xi,x;;r)

23



University of

A
Zurich™ -0.09, (N = 240) A
> sgo3age Kest metric for OD Mature
Statistical Bioinformatics // Department of Molec 2 o %ﬁ
= ‘ °e . ° e H 1000000
. 3500 | o &°, o;.o °
Confounding between gl . 750000
clustering and intensity R P
. ge°° e
— Whether you assume homogeneity .8 o ‘oqn, 250000
or not (in the K-function calculation) 2001 o )’ ©, wed
can have a big impact on the e Lo O%E"’Z 0
estimated curves e
1500 2000 2500 3000
— Are these cells clustered or have X
different intensity? Hard to tell. B 0.01, (N = 457) D
S gon® < 1
Lolpg.s W &3, 6e+05
-2500 o to o 3% R
° e ¢ o . 0.‘
o . c .t 4e+05
- ° A4 :. ° ° ®* o o
o 3000 .s N ] . ..o ¢£
%0 ee, " . 2e+05
3500 Rl N .‘:: o
.:...o .:. ‘.‘ . ° O'o ;o .. L) .. Slice
o & o ..-.'.,'g 009 00
pasta: Pattern Analysis for Spatial Omics Data $.7 1 - 0(;1 0 100 200 300 400
—4000 — 0.
Martin Emons™', Samuel Gunz!!, Helena L. Crowell?, Izaskun Mallona', Reinhard Furrer?, and 1500 2000 2500 3000 — 021 r
Mark D. Robinson'* X . [P— ?

B
— — _——



University of
Zurich™

Statistical Bioinformatics // Department of Molecular Life Sciences

“Local” indicators of spatial association = LISA
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Functions/Curves —> Functional PCA

LISA curves of slice 0.01

750 -
L]
M ° L4 o M °
L]
5 L]
S Se oy oo
sel * e r ° ]
500 ‘ "".'f'?.; - ':g‘-' s.. . . © W (i
gl ol 3 ° O o‘ ° . ° °
7 ) L) 3 .%
o 5% 400 o O b 4 . ‘.r L . ¢ o esee 400
O & PRALII } ® T 0 e °° . . 300
= 300 a ° . e © o °
3 < . e o' < }. . o.n °® . 200
> 200 4 .£ °q o ° ° ® e ®
-5 - '... e oo 100
100 e LN .. . ° ° 0
. [} L]
0 ° .
250
-10 L]
L]
10 0 10 20 30
PC1
————— =
0-
0 100 200 300 400
r
— T

26



Microglia

Ependymal

Other senses of spatial
heterogeneity (again, functions!)
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Extensions of the K function (1)

— multitype K-function Kij(r), also called the bivariate or cross-type K-function, is the
expected number of points of type j lying within a distance r of a typical point
of type i, standardised by dividing by the intensity of points of type j.

) :gl{o <lu—xl <r)
1 () (i)
K,-j(r)=l—j [t(u,r,X ) |MEX ]

28
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Extensions of the K function (2)

— L and g functions

An alternative tool is the pair correlation function g(r) which contains contributions only from
interpoint distances equal to r. In two dimensions, it can be defined by

K'(r)

g(r)_27rr
(=T S
[o\] (o]
7 - 2
< 2 2

o S0

v v
o S
<o _| S
(=} o

000 005 0.10 0.15 020 0.25
r

000 005 0.10 0.15 020 025
r

g(r)

(7.22)

T I T T I T
000 005 0.10 0.15 020 0.25
r
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Other point pattern summaries

Summary statistics for a point pattern:

Istat
allstats
pcf
Kinhom
Linhom
pcfinhom
Finhom

Ginhom

Jinhom
localL
localk
localpcf

localKinhom

localLinhom

empty space function F'

nearest neighbour distribution function G
J-function J = (1 — G)/(1 — F)
Ripley's K -function

Besag L-function

Third order T'-function

all four functions F', G, J, K

pair correlation function

K for inhomogeneous point patterns

L for inhomogeneous point patterns

pair correlation for inhomogeneous patterns
F for inhomogeneous point patterns

G for inhomogeneous point patterns

J for inhomogeneous point patterns
Getis-Franklin neighbourhood density function
neighbourhood K-function

local pair correlation function

local K for inhomogeneous point patterns

local L for inhomogeneous point patterns

localpcfinhom local pair correlation for inhomogeneous patterns

Ksector
Kscaled
Kest.fft

Kmeasure
envelope

varblock

lohboot

Directional K -function

locally scaled K -function

fast K -function using FFT for large datasets
reduced second moment measure
simulation envelopes for a summary function
variances and confidence intervals

for a summary function

bootstrap for a summary function

T —
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Fundamentals of Spatial Statistics (the subset that is useful for spatial omics
data)

—Point patterns
— Definitions: intensity, homogeneity, dependence
— Multi-type point patterns
— Marked point processes
— Statistical summaries
—Lattice data
— Definitions: lattice, regularity, neighbourhood matrix
— Univariate global spatial autocorrelation
— Univariate local spatial autocorrelation
— Multivariate options

31
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Lattice data analysis

- Lattice: spatial units D = {A,, A,,...,A.} that are not overlapping
- Lattice data: Random variable along the lattice Y, = Y(A)

- Regularity: All spatial units have the same size, shape and observations are
placed on a regular grid

- Neighbourhood matrix: W = w; defines the spatial relationships

Spatial Autocorrelation Spatial autocorrelation

measures take the form w;;U;;, which uses similarity

measure U;; weighted by the strength of the connec- Zuur et al. 2007
tion w;; [66, 26].

T — I
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Spatial autocorrelation: Global Moran’s |

— Global measure of auto-correlation (correlation to S S
signal nearby in space); assume homogeneity! I = 1 Z:ij Wij (Xi X ) (Xf X )
— Alternative: Geary’s C Zij Wij N-1 Zi (X,- — )7)2

- (N-1D) XY wi(i — )
- 2W 52 (i — 2)?

33
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Spatial autocorrelation: Local Moran’s |

T;

— Local measure of auto-correlation (correlation to I = Z wij(z; — Z)
signal nearby in space)

2k (@k — m)z/(n -1)

locl(Nrgn) -log10(adj. p-val.)
4
- :
2
2
0
-2 1
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Spatial autocorrelation measures: weights! e

Adjacent spots H&E neighbors k=5 NNs
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Cell-cell communication

— SpatialDM: Global Moran’s R, which is a bivariate version of Moran’s |

A Pair A Pair B
-

/ I '—‘ / oﬁr‘n“‘,
0 - N

Article https://doi.org/10.1038/541467-023-39608-w 1
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|

SpatialDM for rapid identification of spatially |
co-expressed ligand-receptor and revealing
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cell-cell communication patterns * :
200 pym ++ " Local hits
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— SpatialDM: Global Moran’s R, which is a bivariate version of Moran’s |
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Example: Alpha and beta cells il
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» “feature of type 1 diabetes (T1D) is that the immune system destroys
pancreatic -cells but not neighbouring a-cells, even though both 3-cells and
a-cells are dysfunctional.”

* Calculated Geross metric between alpha and beta cells

* if the alpha cells remain the same and beta cells get progressively
destroyed, the distances should increase over the disease

No diabetes mellitus T1D mellitus

Alteration of the B cell
B cell phenotype destruction
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spatialFDA can be applied to multi-sample/condition experiments

— Diabetes islet IMC dataset [Damond et al., 2019]
— Analyse recruitment of cytotoxic T cells to the islets during the disease — responsible for 3
cell destruction

SUOI}IPUOD

Martin



Spatial metrics summarise differential colocalisation
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Spatial metrics summarise differential colocalisation
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Functional general additive mixed model T‘
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— Compare not a summary statistic between conditions but the function over the domain r
— General additive mixed model with a functional response

Elyi(r)] = g(a(r) + Bog( (r) + DX, 1) + €i(r))

J=1

— Compare non-diabetic curves as reference to onset and long-duration.
[Scheipl et al., 2015, Scheipl et al., 2016]

spatialFDA Bioconductor package



fGAM results - parameters over a radius r

Intercept .
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Other work in this space

SpaceANOVA: Spatial Co-occurrence Analysis of Cell Types in

Multiplex Imaging Data Using Point Process and Functional ANOVA
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Bioimage informatics
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Concluding remarks

e Most spatial data can be represented as lattice data; some
data can be represented as point patterns

e Point pattern analysis offers a few tools for exploring / inferring
spatial heterogeneity —> represent summaries as functions
and thus functional data analysis tools could also be useful

e Multi-sample analysis: functional PCA, functional GAM
modelling = flexible framework

e (Gotchas: confounding b/w intensity and correlation, weighting
matrices
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