SIB Spatial Omics Course, UNIL, January 23rd, 2025

(Spatial) Statistics for spatial omics data

Mark D. Robinson Statistical Bioinformatics Group, DMLS@UZH+SIB

https://robinsonlabuzh.github.io/

Samuel

Martin

Helena

Peiying

Simone

March 23 - 27, 2025

Modern benchmarking: advancing computational methods in molecular biology

Ascona, Switzerland

Modern Benchmarking: Advancing Computational Methods in Molecular Biology is an event dedicated to bringing together researchers and students from bioinformatics, computational biology, molecular biology, and related fields. This event aims to open a dynamic and widely-varying discussion of the various topics of method evaluation (benchmarking) as a means to nudge the field towards higher standards and modern open and community-based approaches.

Join us in Ascona to contribute to the advancement of computational methods in molecular biology and help shape the future of this dynamic field.

First name	Last name	Program_time
Ana	Conesa	Monday early morning
Matt	Ritchie	Monday late morning
Jessica Jingyi	Li	Monday early afternoon
Yue	Сао	Tuesday early morning
Hongkai	Ji	Tuesday late morning
Gregory	Grant	Tuesday early afternoon
Salvador	Capella-Gutierrez	Wednesday early morning
Malte	Lücken	Wednesday early morning
Izaskun	Mallona	Wednesday early morning
Alice	McHardy	Thursday early morning
Moritz	Herrmann	Thursday late morning
Benchmarking microbial		

Benchmarking microbial differential abundance analysis methods by employing only real data Benchmarking Single-Cell

Multiomics Integration to Enhance Cellular and Subpopulation Resolution

Leveraging Multi-Omics Data for the Evaluation of Kinase Activity Inference and Network Contextualisation

Benchmarking cell segmentation methods for fluorescent images in spatial omics

Benchmarking pretrained language models for modeling antigen-specific TCR-CDR3 regions 11 keynotes, ~20 contributed talks, ~25 posters

From bulk to single-cell RNA-seq to imaging- & sequencing-based spatially resolved transcriptomics

Slide from Helena Crowell

spatial

- molecule-level data
- targeted panel (100s-1000s of features)
- single-cell resolution requires segmentation

- spot-level data
- whole transcriptome (10,000s of features)
- single-cell resolutions requires aggregation or deconvolution

Main concept: different data representations

What (statistical) analyses are done on spatial omics datasets?

- Deconvolution
- Finding spatially-variable "features"
- Point patterns
- Lattice data
- Cell-cell communication (simple) —> co-localization

Tobler's "first law of geography": everything is related to everything else, but near things are more related than distant things.

Finding spatially-variable genes: SpatialDE

- SpatialDE: response = normal distribution with covariance with two components: i) based on distance b/w points exponential decay; ii) constant non-spatial variance
- Null model: fit just the nonspatial variance (i.e., without sigma)
- Fit 2 models, likelihood ratio test

SpatialDE: identification of spatially variable genes

Valentine Svensson^{1,2}, Sarah A Teichmann^{1,3} & Oliver Stegle^{2,4}

SpatialDE model. SpatialDE models gene expression profiles $y = (y_1, ..., y_N)$ for a given gene across spatial coordinates $X = (x_1, ..., x_N)$, using a multivariate normal model of the form

$$P(y | \mu, \sigma_s^2, \delta, \Sigma) = N(y | \mu \cdot 1, \sigma_s^2 \cdot (\Sigma + \delta \cdot I))$$
(1)

The fixed effect $\mu_g \cdot 1$ accounts for the mean expression level, and Σ denotes a spatial covariance matrix defined on the basis of the input coordinates of pairs of cells. SpatialDE uses the so-called squared exponential covariance function to define Σ :

$$\Sigma_{i,j} = k(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{2 \cdot l^2}\right)$$
(2)

Spatially variable genes

 different types (senses?) of spatially variable genes

Article

https://doi.org/10.1038/s41467-023-39748-z

nnSVG for the scalable identification of spatially variable genes using nearestneighbor Gaussian processes

Received: 15 June 2022 Accepted: 23 June 2023

Lukas M. Weber 1, Arkajyoti Saha², Abhirup Datta 1, Kasper D. Hansen 1 & Stephanie C. Hicks @1

Selected SVGs: human DLPFC

600

n

Spatially variable genes

Article

https://doi.org/10.1038/s41467-023-39748-z

nnSVG for the scalable identification of spatially variable genes using nearestneighbor Gaussian processes

Received: 15 June 2022 Lukas M. Weber ©¹, Arkajvoti Saha², Abhirup Datta ®¹, Kasper D. Hansen ®¹ & Accepted: 23 June 2023 Stephanie C. Hicks ®¹⊟

Selected SVGs: human DLPFC

counts

600

n

LIBD

Spatially variable versus highly variable

My/2

(More mathematical details on Moran's I below)

9

Alternatively, spatially variable features = **DE** between domains

To find spatially variable genes (SVGs); spatial clustering + classical statistical method works quite well

JOURNAL ARTICLE

DESpace: spatially variable gene detection via differential expression testing of spatial clusters a

Peiying Cai, Mark D Robinson, Simone Tiberi 🖾

Peiying Cai

Main concept: different data representations

Fundamentals of Spatial Statistics (the subset that is useful for spatial omics data)

- -Point patterns
 - Definitions: intensity, homogeneity, dependence
 - Multi-type point patterns
 - Marked point processes
 - Statistical summaries

1st Edition **Spatial Point Patterns Methodology and Applications with R** By Adrian Baddeley, Ege Rubak, Rolf Turner Copyright 2016

- -Lattice data
 - Definitions: lattice, regularity, neighbourhood matrix
 - Univariate global spatial autocorrelation
 - Univariate local spatial autocorrelation
 - Multivariate options

What are point patterns?

- data with spatial locations of objects (cells .. maybe transcripts) are generated by a stochastic process
- lattice data is not a point pattern!
- point pattern analysis gives tools for both discrete (cell types) and continuous (gene expression) "marks"
- We mostly focus here on discrete categories, i.e., patterns within and between cell types

- "a realisation of a spatial point process effectively assumes that the locations of points are not fixed, and that the point pattern is the response or observation of interest."

Scenario 14.1. A weather map for Europe displays a symbol for each major city indicating the expected type of weather (e.g., sunny, cloudy, storms).

Scenario 14.2. An optical astronomy survey records the sky position and qualitative shape (elliptical, spiral, etc.) of each galaxy in a nearby region of space.

Scenario 14.3. Trees in an orchard are examined and their disease status (infected/not infected) is recorded. We are interested in the spatial characteristics of the disease, such as contagion between neighbouring trees.

Some definitions

- notation: **X** is the point process; **x** is the (observed) point pattern
- lambda: intensity function

A point pattern is denoted by a bold lower case letter like x. It is a set

$$\mathbf{x} = \{x_1, x_2, \dots, x_n\}$$

of points x_i in two-dimensional space \mathbb{R}^2 . The number $n = n(\mathbf{x})$ of points in the pattern is not fixed in advance, and may be any finite nonnegative number *including zero*. In practice, the data points are obviously recorded in some order x_1, \ldots, x_n ; but this ordering is artificial, and we treat the pattern \mathbf{x} as an unordered set of points.

$$\mathbb{E}[n(\mathbf{X}\cap B)] = \int_B \lambda(u) \,\mathrm{d}u$$

Definitions

- X is the point process; x is the (observed) point pattern
- lambda: intensity function
- Complete spatial randomness (CSR) has two properties:

homogeneity: the points have no preference for any spatial location;

independence: information about the outcome in one region of space has no influence on the outcome in other regions.

- More specifically:

homogeneity: the number $n(\mathbf{X} \cap B)$ of random points falling in a test region *B* has mean value $\mathbb{E}n(\mathbf{X} \cap B) = \lambda |B|;$

independence: for test regions B_1, B_2, \ldots, B_m which do not overlap, the counts $n(\mathbf{X} \cap B_1), \ldots, n(\mathbf{X} \cap B_m)$ are independent random variables;

Couple more definitions

- Inhomogeneity

The *inhomogeneous Poisson point process* with intensity function $\lambda(u)$ is defined by the following properties:

intensity function: the expected number of points falling in a region *B* is the integral $\mu = \int_B \lambda(u) du$ of the intensity function $\lambda(u)$ over the region *B*;

independence: if space is divided into non-overlapping regions, the random patterns inside these regions are independent of each other;

Poisson-distributed counts: the random number of points falling in a given region has a *Poisson* probability distribution;

Properties of point patterns

- Which of these is homogeneous?
- Which of these is completely spatially random (CSR)?
- Which of these is clustered?
- Which of these is not independent?

Extensions of point patterns

- (patterns can be regions/lines, not just points; can be in higher dimension (e.g., 3D); temporal component .. most of the methods I discuss have extensions; not discussed here)
- marks --> marked point process
- types ---> multi-type point process (contrast with 'multivariate')
- covariates

Multi-type point patterns

https://www.nature.com/articles/s41587-021-01006-2

Subtlety here: multi-type point patterns versus multivariate point patterns

Correlation for **point patterns**

- Ripley's K function
- words definition: the empirical K-function K(r) is the cumulative average number of data points lying within a distance r of a typical data point

Correlation for **point patterns**

- Ripley's K function
- mathematical definition:

$$K(r) = \frac{1}{\lambda} \mathbb{E} \left[\text{number of } r \text{-neighbours of } u \mid \mathbf{X} \text{ has a point at location } u \right]$$

$$t(u, r, \mathbf{x}) = \sum_{j=1}^{n(\mathbf{x})} \mathbf{1} \{ 0 < ||u - x_j|| \le r \}$$

Definition 7.1. If **X** is a stationary point process, with intensity $\lambda > 0$, then for any $r \ge 0$

$$K(r) = \frac{1}{\lambda} \mathbb{E}\left[t(u, r, \mathbf{X}) \mid u \in \mathbf{X}\right]$$
(7.6)

does not depend on the location u, and is called the K-function of X.

What about correlation and intensity together?

- inhomogeneous correlation functions
- edge correction

$$\widehat{K}_{inhom}(r) = \frac{1}{D^p|W|} \sum_{i} \sum_{j \neq i} \frac{\mathbf{1}\left\{ ||x_i - x_j|| \le r \right\}}{\widehat{\lambda}(x_i)\widehat{\lambda}(x_j)} e(x_i, x_j; r)$$

- n.b. confounding of correlation and intensity (next slide)

Statistical Bioinformatics // Department of Molec

Confounding between clustering and intensity

- Whether you assume homogeneity or not (in the K-function calculation) can have a big impact on the estimated curves
- Are these cells clustered or have different intensity? Hard to tell.

pasta: Pattern Analysis for Spatial Omics Data

Martin Emons^{1,†}, Samuel Gunz^{1,†}, Helena L. Crowell², Izaskun Mallona¹, Reinhard Furrer³, and Mark D. Robinson^{1,*}

"Local" indicators of spatial association = LISA

Functions/Curves —> Functional PCA

Other senses of spatial heterogeneity (again, functions!)

Martin

Distribution of distance to the 5th nearest neighbour

Extensions of the K function (1)

multitype K-function Kij(r), also called the bivariate or <u>cross</u>-type K-function, is the expected number of points of type j lying within a distance r of a typical point of type i, standardised by dividing by the intensity of points of type j.

$$t(u, r, \mathbf{x}) = \sum_{j=1}^{n(\mathbf{x})} \mathbf{1} \{ 0 < \|u - x_j\| \le r \}$$

$$K_{ij}(r) = \frac{1}{\lambda_j} \mathbb{E}\left[t(u, r, \mathbf{X}^{(j)}) \mid u \in \mathbf{X}^{(i)}\right]$$

Extensions of the K function (2)

– L and g functions

An alternative tool is the **pair correlation function** g(r) which contains contributions only from interpoint distances *equal to r*. In two dimensions, it can be defined by

$$g(r) = \frac{K'(r)}{2\pi r} \tag{7.22}$$

Other point pattern summaries

-	
<u>Fest</u>	empty space function F
<u>Gest</u>	nearest neighbour distribution function G
<u>Jest</u>	J-function $J=(1-G)/(1-F)$
Kest	Ripley's <i>K</i> -function
Lest	Besag <i>L</i> -function
<u>Tstat</u>	Third order T -function
<u>allstats</u>	all four functions F, G, J, K
pcf	pair correlation function
Kinhom	K for inhomogeneous point patterns
Linhom	L for inhomogeneous point patterns
pcfinhom	pair correlation for inhomogeneous patterns
Finhom	F for inhomogeneous point patterns
Ginhom	G for inhomogeneous point patterns
Jinhom	J for inhomogeneous point patterns
localL	Getis-Franklin neighbourhood density function
<u>localK</u>	neighbourhood K-function
<u>localpcf</u>	local pair correlation function
<u>localKinhom</u>	local K for inhomogeneous point patterns
<u>localLinhom</u>	local L for inhomogeneous point patterns
localpcfinhor	n local pair correlation for inhomogeneous patterns
Ksector	Directional K-function
<u>Kscaled</u>	locally scaled K -function
Kest.fft	fast K -function using FFT for large datasets
<u>Kmeasure</u>	reduced second moment measure
<u>envelope</u>	simulation envelopes for a summary function
<u>varblock</u>	variances and confidence intervals
	for a summary function
lohboot	bootstrap for a summary function

Summary statistics for a point pattern:

Fundamentals of Spatial Statistics (the subset that is useful for spatial omics data)

- -Point patterns
 - Definitions: intensity, homogeneity, dependence
 - Multi-type point patterns
 - Marked point processes
 - Statistical summaries
- -Lattice data
 - Definitions: lattice, regularity, neighbourhood matrix
 - Univariate global spatial autocorrelation
 - Univariate local spatial autocorrelation
 - Multivariate options

Lattice data analysis

- Lattice: spatial units $D = \{A_1, A_2, \dots, A_n\}$ that are not overlapping
- Lattice data: Random variable along the lattice $Y_i = Y(A_i)$
- Regularity: All spatial units have the same size, shape and observations are placed on a regular grid
- Neighbourhood matrix: $W = w_{ij}$ defines the spatial relationships

Spatial Autocorrelation Spatial autocorrelation measures take the form $w_{ij}U_{ij}$, which uses similarity measure U_{ij} weighted by the strength of the connection w_{ij} [66, 26].

Zuur et al. 2007

Spatial autocorrelation: Global Moran's I

- Global measure of auto-correlation (correlation to signal nearby in space); assume homogeneity!
- Alternative: Geary's C

$$I = \frac{1}{\sum_{ij} w_{ij}} \frac{\sum_{ij} w_{ij} (X_i - \overline{X}) (X_j - \overline{X})}{N^{-1} \sum_i (X_i - \overline{X})^2}$$

$$C = rac{(N-1)\sum_{i}\sum_{j}w_{ij}(x_{i}-x_{j})^{2}}{2W\sum_{i}(x_{i}-ar{x})^{2}}$$

Spatial autocorrelation: Local Moran's I

Local measure of auto-correlation (correlation to signal nearby in space)

$$I_i = rac{x_i - ar{x}}{\sum_{k=1}^n (x_k - ar{x})^2 / (n-1)} \sum_{j=1}^n w_{ij} (x_j - ar{x})$$

Spatial autocorrelation measures: weights!

Voyager 1.8.1 Install Technologies - Methods - Functions Changelog

Cell-cell communication

$$ext{Global Moran's } R = rac{\sum_i \sum_j w_{ij} (x_i - ar{x}) (y_j - ar{y})}{\sqrt{\sum_i (x_i - ar{x})^2} \sqrt{\sum_i (y_i - ar{y})^2}},$$

- SpatialDM: Global Moran's R, which is a bivariate version of Moran's I

Cell-cell communication

- SpatialDM: Global Moran's R, which is a bivariate version of Moran's I

Global Moran's $R = \frac{\sum_i \sum_j w_{ij} (x_i - \bar{x}) (y_j - \bar{y})}{\sqrt{\sum_i (x_i - \bar{x})^2} \sqrt{\sum_i (y_i - \bar{y})^2}},$

Example: Alpha and beta cells

- Martin
- "feature of type 1 diabetes (T1D) is that the immune system destroys pancreatic β-cells but not neighbouring α-cells, even though both β-cells and α-cells are dysfunctional."
- Calculated Gcross metric between alpha and beta cells
 - if the alpha cells remain the same and beta cells get progressively destroyed, the distances should increase over the disease

spatialFDA can be applied to multi-sample/condition experiments

- Diabetes islet IMC dataset [Damond et al., 2019]
- Analyse recruitment of cytotoxic T cells to the islets during the disease \rightarrow responsible for β cell destruction

Martin

Spatial metrics summarise differential colocalisation

Gcross metric for alpha and Tc

Spatial metrics summarise differential colocalisation

Gcross metric for alpha and Tc

Functional general additive mixed model

- Compare not a summary statistic between conditions but the function over the domain r
- General additive mixed model with a functional response

$$\mathbb{E}[\mathbf{y}_i(\mathbf{r})] = \mathbf{g}(\alpha(\mathbf{r}) + \beta_{0,\mathbf{g}(i)}(\mathbf{r}) + \sum_{j=1}^J f_j(\mathbf{X}_{ji}, \mathbf{r}) + \epsilon_i(\mathbf{r}))$$

Compare non-diabetic curves as reference to onset and long-duration.
[Scheipl et al., 2015, Scheipl et al., 2016]

spatialFDA Bioconductor package

fGAM results - parameters over a radius *r*

Martin

Other work in this space

SpaceANOVA: Spatial Co-occurrence Analysis of Cell Types in Multiplex Imaging Data Using Point Process and Functional ANOVA

Souvik Seal,* Brian Neelon, Peggi M. Angel, Elizabeth C. O'Quinn, Elizabeth Hill, Thao Vu, Debashis Ghosh, Anand S. Mehta, Kristin Wallace, and Alexander V. Aleksevenko

Bioimage informatics

spicyR: spatial analysis of in situ cytometry data in R

Nicolas P. Canete (1)^{1,2}, Sourish S. Iyengar³, John T. Ormerod³, Heeva Baharlou (1)^{1,2}, Andrew N. Harman^{1,2} and Ellis Patrick (1)^{1,3,*}

STExplorer: Navigating the Micro-Geography of Spatial Omics Data Posted January 22, 2025.

search, University of Sydney, Westmead, NSW, Australia, ²Sydney Medical School, University School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia

Download PDF

Eleftherios Zormpas,
Nikolaos I.Vlachogiannis,
Anastasia Resteu,
Adrienne Unsworth,
Simon Tual-Chalot,
Birthe Dorgau,
Rachel Queen,

D Majlinda Lako, D Dina Tiniakos, Alexis Comber, D Quentin M.Anstee,

D Antonis Giakountis, D Simon J. Cockell

doi: https://doi.org/10.1101/2025.01.17.633539

RESEARCH ARTICLE

FunSpace: A functional and spatial analytic approach to cell imaging data using entropy measures

Thao Vu®*, Souvik Seal, Tusharkanti Ghosh, Mansooreh Ahmadian®, Julia Wrobel^ª, Debashis Ghosh

Concluding remarks

- Most spatial data can be represented as lattice data; some data can be represented as point patterns
- Point pattern analysis offers a few tools for exploring / inferring spatial heterogeneity —> represent summaries as **functions** and thus <u>functional data analysis</u> tools could also be useful
- Multi-sample analysis: functional PCA, functional GAM modelling = flexible framework
- Gotchas: confounding b/w intensity and correlation, weighting matrices

Statistical Bioinformatics Group, DMLS, UZH

Helena Samuel Martin Simone Peiying

URPP Evolution in Action: From Genomes to Ecosystems

Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

